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. A false premise

Graphical aids are often of particular use to
“statisticians. A special graph called normal
probability paper determine whether the distri-
bution of a given sample is approximately nor-
mal. This is done by plotting the cumulative
distribution of a sample upon the probability
paper and then noting how closely this curve
.approximates a straight line. If the curve is
approximately a straight line, the distribution

is approximately normal. If it deviates conside-
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rably from a straightline, the distribution is
not normal. v

In modern medicine normal probability paper
is introduced in determining normal range by
Hoffmann (1963), Waid (1964) and Neumann
(1968). The basic premise for their use of
probability paper is that the observed distribu-
tlon of routine laboratory tests is a mixture
of two normal (or gaussian) distributions, one
representing the healthy persons and the other,
the sick, as is shown in Fig 1. The composite
distribution of two normals is asymmetric and
from a plot on normal probability paper the line
corresponding to the healthy group is deduced
by capitalizing that most of the specimens sent
to laboratories for analysis are normal. On a
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'healthy’

Fig. 1. Two theoretical gaussian distributions, one
representing the healthy and the other the
sick individuals.

straight line 2,59 and 97.5% points are estab-
lished graphically. This eye-fitting is so unrel-
iable that it may provide diverse normal ranges
depending on who evaluates. It is reported by
Elveback and others (1970) that this graphical
method of determining normal range is in fairly
wide use.
~ One way of testing the reasonableness of the
above premise is to actually test several hund-
red normal persons and check the shape of
distributions. In a study of Elveback and others
(1970) values of serum calcium, inorganic phos-
phorus, magnesium, total proteins, albumin and
-urea for 576 healthy persons are plotted. The
distributions in healthy persons are not gaus-
sian for the majority of tests, and the depart-
ures from normality may be major.
Asymmetric distributions arise naturally in
bioclogical contexts. For example, the distribut-
ion of the number of cones on a fir trees’in a
given area of forest, or the distribution of the
number of lepidoptera of the same species
present and observed in a particular location,
are both characterized by high skewness. Over
the years it became well established that the
normal distribution is inadequate to represent
certain set of biologicai data. In medicine, how-
ever, it is not firmly convinced that discordant
values are in no way anomalous, in general.
The graphical method of establiéhing normal
range by normal probability paper is to be

dismissed in medicine for the future, since:
except in a few instances there may be no-
reason to believe the underlying distribution is.

normal.
Normal range

- It is certain that normal range has a comforting

role in the first phase of the diagnostic process:.

the finding of a value outside the range, and.

sometimes even within but near border-line,
usually requires closer examination of the pat-
ient. Eventually practicing physicians might
diagnose patients by overall clinical and morp-
hologic observations. Let us pause for a moment.
to compare the medical meaning of ‘mormal’
and the statistical statement of ‘normal’. There.
are many articles written in the past opposing:
the use of normal range. It is considered that.
the misunderstanding on normal range is due
to the lack of distinction between these two-
terms.

A single value is necessary but insufficient.
in determining that an individual is normal and.
thus medical diagnosis of normality usually need.
to incorporate diverse aspects of human beings,
possibly requiring a careful examination. This.
should not, however, defer adopting quantific-
ation and other scientific procedures of analyzing'
values of a test. If we contemplate the statist-
ical normal range by eliminating any direct.
association with medical phenomena, it is not
correct either. Pure statistical statements shoud
be understood in the meaning of average, com-
mon, and conventional; in other words, it sho-
uld be understood in the meaning of probability.
If the pafticular value is excluded from the
univariate statistical normal range, it is because
that particular value implies the ‘higher
possibility’ of the hazard of some ailment. In
accepting this it also implies that there is a
small chance of unduly diagnosing healthy in-
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dividuals, but with grossly abnormal test values,

as diseased. " Normal range defined by %128
ALpumin : In an article of The Lancet (1967) the normal
-20 values are defined as those within two standard

deviations from the mean of a population. Krupp
and Chatton (1984) adopt this definition and
present a list of normal ranges of chemical
constituents of blood and body fluids. Is the
definition discussed above appropriate as the
definition of normal values? What is the con-

6.0 e/t dition with the distribution of actual test values

""""""""""""""""""""""" that the normal range encompasses approxima-
tely 95% of the distribution? If the distribution

is gaussian, statistical theory explains that it is

Total protein
symmetric and that 95% is contained within

two standard deviations from the mean of the
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Fig. 2. Distributions of the hepar functions of 1,847 persons examined during January-April, 1983 at the
Computerized Health Screening Center of Kangnam St. Mary's Hospital. (The central ranges by the

percentile method, 5th to 95th, Z%th to 97%th and —:zl—th to 99%—th, and the range defined by z+
2s is drawn in its order.) :
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distribution. Thus, altogether 59 of abnormally
low or high values are excluded by the defined
range of Z--2s, where Z is the sample mean
and s the sample standard deviation.

- To investigate a gaussian assumption for the
distribution of actual test values, results of
hepar functions are obtained for 1,847 persons
examined during January-April, 1983 at the
Computerized Health Screening Center of Kan-
gnam St. Mary’s Hospital (Samples were taken
from individual after fasting, with no drinking
water allowed, from 10 PM of previous night).
The distributions of serum albumin, total prot-
ein, glutamic-oxaloacetic and glutamic-pyruvic
transaminase enzyme test values are chosen and
presented in Fig 2. For transaminase enzyme
tests, deviations from the gaussian curve are
fairly obvious, but the distributions of total
protein snd albumin appear to be of gaussian
share. When in fact the assumption is tested
for albumin and total protein, the results show
a statistically significant difference from a gau-
ssian curve (p<{(0.01). There are many ways
in which a distribution of test values can differ
from a gaussian curve. The distribution of
albumin is sharply peaked (leptokurtic) comp-
ared to normal and that of total protein deviates
from normal as a result of few humps.

The use of £42s as the definition of normal
range, strictly speaking, is justified only in the
case where the distribution is close to a gaussian
or at least a symmetric distribution. In other
cases it may be used to make statements in
probability but stating that roughly 95% of the
distribution is contained within the range z--2s
rely in fact on a gauséian assumptioﬁ. For each
test gaussian distribution is fitted using the
sample mean and the standard deviation (Fig
2). For total protein the normal range turns out
to be (6.627, 8.197) and the proportion of
sample values lower than 6. 627 and higher than
8. 197 is, respectively, 1.8% and 2. 6%, totailing

4.4% For albumin the normal range is (4. 069,
5.145) and the proportion of values lower than
4,069 and higher than 5,145 is, respectively,
2.89% and 1.4%, totalling 4.295. Although the
distributions are not exactly gaussian, use of
range #-+2s in dissecting the central 95% of
the distribution is appropriate since they are
symmetric.

The absurdity of the normal range defined
by £+2s for transaminase enzyme tests is obv-
ious. The range £--2s corresponds to (-12, 533,
59.685) for the test of glutamic-oxaloacetic and
to (-19.889, 49.679) for glutamic-pyruvic. For
both tests the range extends to, biologically
impossible, negative values, and hence the sam-
ple proportion of values less than 0 is null for
both tests and the proportion of sample values.
higher than the upper limit is respectively 2. 8%
for glutamic-oxaloacetic and 2. 8% for glutamic-
pyruvic. In fact the proportion of values less:
than @ is considerably higher for both tests.
under the fitted normal distributions. It is thus.
inevitable to resort to some other definitions of
normal range for asymmetric distributions.

The reason that the range z42s plays an.
important role in many fields at present time.
is due to the superior mathematical tractability
and certain optimal sampling properties of the
mean and the standard deviation. Another rea-
son is due to the commonly mistaken notion
that the distributions of most test values are:
gaussian. It should be remembered that for the
case of asymmetric distributions the defined

normal range is quite misleading sometimes.
Normal range defined by percentiles

No matter in which classes the distributions:
might be fall into, the principal characteristics.
of the distribution is the measure of location
and the measure of dispersion. There are three

measures of location in common use: the mean..
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the median and the mode. And, as the measures
of dispersion, there are the standard deviations,
the mean deviations, the range, the interdeclie
range and the interquartile range. The ranges
are the differences of certain lower and upper
values and they are in general less known as
measures of dispersion. Not only the range is
of interest: the lower and upper percentage
points themselves help locating the distribution.
The range itself determining the degree of
scatter and the whereabouts of these lower and
upper points explaining the location of the dis-
tribution, these measures evidently give some
idea of the distribution.

The apparent conflict discussed earlier between
a normal range defined by Z--2s and biological
reality has made researchers turn to a percent-
ile method. This percentile method is génerally
recognized as the best method currently avai-
lable for the determination of the normal range
by many (Harwood et al (1978), Elveback et
al (1970) and Feinstein (1977)). Some arbitrary
limit of two percentiles, commonly 5th to 95th
percentile, is chosen as the normal range.

Percentiles of -Lth to 99~127th, Zé—th to 97—12~th
and 5th to 95th are obtained and drawn in
Fig 2 for the distribution of hepar functions.
The range defined by #+4-2s is also added. For
the symmetric distributions of total protein and
albumin the range ©-+2s is shown to be close
to the range of 2—12— th to 97—%—th percentiles and,
as the percentages within the range decreases,
the width of the range tends to narrow fast.
For the asymmetric distributions of transaminase
enzyme tests, though the range defined by £-+2s
provides an unreasonable limits, the percentile
ranges are appropriate except that the range of
%th to 99%—th‘ percentiles may seem to be too
wide and with that limit a substantial number
of individuals would be classified as normal. It
is doubtful how Krupp and Chatton (1984) has
determined, based on the very definition of

Z4-2s, the normal ranges of various tests done
for the blood and body fluids, since it is unw-
arranted that the distributions of the tests pre-
sented by them were all gaussian.

Certainly percentile method has an advantage.
that it is obtained irrelevant to the shape of
a distribution. Hence, ranges defined by the
percentiles are always safe. Nevertheless, this
method has very little use currently. Percentiles
suffer from the disadvantage of being relatively
difficult to handle mathematically com;;ared to.
the mean and the standard deviation, since they
are not expresséd as algebraic functions of test

values.

Standard error of percentiles

For the percentile method there seem to be
not an enough and convincing explanation why
the statistical strategy devides symmetrically on
either side of the distribution. Why choose an.
equal break of 2%% and 2-%—%, for example,
for the case of 95% range? This question is to
be investigated based on the standard error of
the percentiles. If the lower and upper percen-
tiles are taken to be equal, we say that the
ranges are central. In the contrary case the
ranges will be called non-central. It should be
observed that centrality in this sense implies
the equal distribution of percentiles at lower
and upper extremes.

If p, (=1—¢))th percentile of a sample of
size n falls below a value z;, the sampling
variance of z; is

var z;=p:q1/nf?,
where f; is the ordinate of the population dist-
ribution at x;. (Refer Kendall & Stuart, 1967).
Thus, the variance of the precentile point will
be unknown unless the population distribution
is specified. The variance of range R is the
variance of the difference of two percentiles at

z; and z, and is given by
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var R=varz, +varz;—2cov(xy, z,)

1 pi1qx + 2P
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where fi, f; are the ordinate of the population
distribution, f, relating to the upper percentile.

Suppose the population distribution is symm-
etric and furthermore normal with variance o2
Then f;=f, and the standard error of the
central range of Z%th to 97%th percentiles is
4.037g/ § 7, since the ordinate at both percen-
tile points is fi=.053991/c. What about the
non-central range? The standard error of the
non-central range of 1st to 4th percentiles, for
instance, is obtained as 4.140¢/ /7, since fi=
. 02635 and f,=.08650. It turns out that the
standard error of the central and non-central
ranges do not differ much for the case of gau-
ssian population, resulting somewhat smaller
values for the central range.

If the population distribution is normal, cen-

tral range of 2%th to 97—%4}1 percentiles obt-
ained from a sample of test values would app-
roximately equal to the range obtained by £-4-2s.
However, standard errors of the ranges determ-
ined by two different methods are not the same,
since standard error is related to the way in

which parameters are estimated. At the present

time, the standard errors of these two methods
are being investigated by the present author.
It is of interest to consider how the standard
errors of the range differ for the asymmetric
population distribution. There are many distri-
butions classified as asymmetric. Among them
chi-square distribution is unimodal and has an
unlimited range in one direction. The standard
errors of the range are studied when the popu-
lation distribution is specified as chi-square.
Chi-square distribution with four and six degrees

of freedom are shown in Fig 3 and the standard

Table 1. Standard errors of the central and non-central percentile ranges when the population distribution is
specified as chi-square with 6 degrees of freedom.

Standard error X ¥7

Standard errors of the range

percentiles of the range

upper percern- lower percen-

tile point tile point range #=100 7=200 n=300
24 %~97%% 3.020 16. 430 16. 629 1. 290 1.084 . 980
2 %~9T % 3.087 15. 108 15. 344 1.239 1.042 . 941
1 %~9% % 3.249 13.228 13.556 1.164 .979 .885
5 %~% % 2. 944 11. 921 12.127 1.101 . 926 .837
4 %~9% % 2.975 10. 970 11. 236 1. 060 . .892 . 806
3 %~97 % 3. 000 10. 220 10.511 1.025 . 862 .779
24 %~97+% 3. 020 9.915 10. 298 1.015 .853 771

Standard errors of the range

percentiles of the range

n=400 2=500 #=1,000 #=2,000 ==3,000 #=4,000 »=5,000
2+ %~97+% .912 . 863 .725 . 610 2551 .513 .485
2 %~9T % .876 .828 . 696 . 586 .529 . 493 . 466
1 %~9% % .823 .778 . 655 . 550 . 497 .463 .438
5 %~9% % .778 . 736 . 620 .521 . 470 .438 .415
4 %~9 % . 750 .709 .596 J501  © .453 ¢ 422 .399
3 %~ % © 725 . 686 .576 .485  .438 407 . 386
2% %~97% 9% .718 . 679 .571 . 480 . 434 . 404 . 382
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Fig. 3. Chi-square distributions with four and six
degrees of freedom.

errors of the range for different percentiles are
shown in Table 1 for the population distribution
of chi-square with six degrees of freedom. The
standard errors of the upper percentile points
are getting larger as the point is further away
from the origin and that of the range itself
depends largely on the magnitude of the stan-
dard error corresponding to the upper percentile
point. Chi-square distribution extends to positive
.ihﬁnity ‘and the lack of precision for upper
percentile point is to be expected. As the sample
size increases, the standard error decreases. The
959 central range with the sample size of
400 has the same magnitude of standard error
with the 90% central range of sample size of
a little over 200. And, the 95% central range
with the sample size of 4,000 has the same
magnitude of standard error with the 90%
central range of sample size of a little over
2, 000.

Different reliability is expected for the range
.of percentiles if the population distribution is
of some other families. And the result informs
us that unless the population distribution is
specified most reliable range is unknown in
general. In the absence of other considerations
it might be convenient to employ central ranges,
but circumstances sometimes arise in which
non-central ranges are mo're serviceable. If clin-

jcal interest centers largely on elevated values

for certain tests, for instance, calcium, then we .
must clearly err, on the basis of experiences
to date, on the safe side by imposing higher
percentiles to the upper extremes. In the cont-
rary case in which the accuracy of the lower
limit of the range is more desired than that of
the upper limit, higher percentiles are imposed

to the lower extremes.
Summary

Normal range has use mainly in the first
phase of the diagnostic process, that is, to screen
or to raise ideas about possible pathology. The
traditional method of determining it is based
on the probability paper or on the mean plus
or minus two standard deviations. These meth-
ods are often turned out to be vague and imp-
ractical. The percentile method is adequate and
flexible, though. The appropriate limit of lower
and upper points should be chosen by consid-
ering medical aspects above all things and also
the reliability of the range determined by the
standard error. )

The results of normal range are interesting,
strictly speaking, only for the hospital concer-
ned. Differences exist between the normal ranges
reported by various sources (Bezemer et al,
1983). It would be best to establish the normal
range based on a population comparable to a
group of individuals to whom the normal range

is {o serve as a norm.
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