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On the Computational Efficiency and Stableness of Burg’s
Algorithm for Maximum Entropy Spectral Analysis

Hee Joon Kim*

Abstract: Burg’s algorithm for maximum entropy spectral analysis is studied with respect to its

computational efficiency and stableness. The Burg’s method is not only less efficient than the Yule-

Walker’s method but also sometimes unstable due to its mathematical irrationality. This irrationality

is demonstrated by analyzing an artificial time series, and more stable and effective method is

proposed. An efficient procedure using Goertzel’s algorithm to compute power spectral densities is

also proposed.

INTRODUCTION

Various computational methods for estimating
the power spectral density of time series are
now well known and widely used. In earlier
days, available methods were only Fourier anal-
ysis or the method of Blackman and Tukey
(1959) based on autocorrelation function (ACF).
Burg (1967; 1968) introduced maximum entropy
method (MEM) for spectral analysis which gives
good resolution even for periods comparable to
the data length. Its mathematical properties were
discussed in detail by Lacoss (1971), Burg
(1972) and Ulrych (1972). Baggeroer (1976)
derived the probability density and confidence
interval for the spectral estimation by the MEM
using a Wishart model for the estimated covar-
iance. Ulrych and Bishop (1975) suggested the
use of Akaike’s final prediction error (FPE)
criterion (Akaike, 1969;1970) for determining
the optimal length of prediction error filter
(PEF). Anderson (1974), on the other hand,
gave a fast and simble procedure to compute
PEF coefficients in MEM. Based on this proce-
dure, Hino (1977, p.235-236) and Kanasewich
(1981, p.160-162) reported FORTRAN pro-
grams.
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In the Burg’s algorithm, both PEF and ACF
are determined by minimizing the practical pre-
diction error. Thus the ACF is not needed a
priori in the Burg’s method. It is by now well
recognized that the Burg’s method has potential
superiority over other conventional spectral
estimators, in paticular for short data length,
but some inherent shortcomings are still rema-
ined. The purpose of this paper is to discuss the
computational efficiency and the stableness of
the Burg’s algorithm. After the Burg’s algo-
rithm is reviewed briefly and examined by ana-
lyzing an artificial time series, a modified Burg’s
algorithm will be proposed. Furthermore, an
efficient procedure to compute the power spectral
density for desired frequencies using a estimated
PEF will be also proposed.

MAXIMUM ENTROPY SPECTRAL
ANALYSIS

Suppose a set of data z;,z,,---,zy with an
equal time spacing 4t. The MEM power spec-
trum P(f) is then estimated by

P(f)=P,4t/|1+ k;"'la,,.kexpc—mfuo E

€))
where f is the frequency, P, the output power
of m+1 long PEF, a,; the PEF coefficient and
i the imaginary unit. The P, and a,; are de-
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termined by the following normal equation.
o P P 1 P,
G0 Pt | Jam| =] 0 (2
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where ¢, is the ACF with lag k. If we know all
of the ACF, unknowns (au, -, dpm; Pn) are

easily obtained. Because the matrix of ACF in

<

-

(2) has a Toeplitz structure, the unknowns can
be solved efficiently by Levinson’s recursion
formula (Levinson, 1947; Robinson and Silvia,
1979, p.433-436). In this formula equation (2)
is solved iteratively by stepwise increase of the
matrix dimension m—1 to m, For m=(, P, is

estimated by
Po=go=—i3" 22 ®)
=T N T

Above procedure is called the Yule-Walker’s
method.

On the other hand, the Burg’s method regards
¢m in (2) as an unknown. So an additioal cri-
terion is required before a unique solution is
obtained. According to Burg (1968), @umm is deter-
mined by minimizing an average output power
when the PEF is operated in both forward and
backward directions. The average power r,, of
the m+1 long PEF is given by

N—m

=1

m 2
+<xl+m+ kglamkxl+m—k) ] €))

By minimizing x,, with respect to a,., we can
obtain a,.. Once the a,, is determined, remain-
ing unknowns are calculated by the Levinson’s
recursion:
U= 12+ Ay 1m—p

k=1,2,-,m—] (5)
If we put g,0=1 and a,,=0 for k>m, (5)
holds for all m. The recursion formula for P,
is derived by inserting (5) in (2), ie.,

Pm=Pm—1 (1_ aﬁ;m) ' ) ‘ (6)

The unknown ACF ¢,, if required, is also

derived from (2) as

¢m= - gamk¢m—k (7)‘

k

Equation (4) can be now rewritten by use of
(5) as

(e,

=1

+ (k;:‘_‘_(;,amkxl+m—k>2 ]

N-—m m
=-2—(_NIT755— 2 [(kzz:oam—xk-ttﬂ

=1

m 2
+ ammkgoam—-lm—kzl+k)

m m 2
+ (kz_;o Am—1kT1+m~k +amﬂ’l!_20am—1m—kxl+m—k> ]

=2(T£‘ﬂl—)_ Z:” [ (bml+ammfml)z

+ (fml+ammbml) 2 ] (8)
We have here introduced the quantities
bml =[§’ am—lka—k=k=ZOam—1m——kxl+m—k (9)‘
Sntl= 2 8m 14 T tm =2 g 1m_kT1gn (10>
=0 k=0
=1,2,-,N—m.

Since b, and fm are independent of 4, the
minimizing condition

(2
gives
N-m N—-m
Amm=—2 IZ:I bmlfml/l’__z1 (bxznl +fnzzl) (12)
Because
az,,m _ 1 .N—m 2 2
oa2. = N—m E(bmt+fmz)>0

the extremum of z,, for a,,, given by (®) is a
minimum. A fast and simple procedure for esti-

mating the Burg’s algorithm was given by
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Anderson (1974).

COMPUTATIONAL EFFICIENCY OF MEM

In this section we estimate required computa-
tional quantities for both the Yule-Walker and
the Burg methods. In the Yule-Walker method
the ACF in (2) is usually obtained by

lN—k
¢k=W§Ii+k$i, k=0,1,,m (13)

where z;=0 for i>N. Its required computation
is approximately

(m+1) (N—m/2).
To solve (2), the Levinson’s recursion formula

with respect to @, is

Py "Qna | [ Pm
0 0 0
Flmm | P = (14
0 0 0 |
Qma_ Pual 10 ]
where
Qm—lzkzzoam—lkﬂbm—k (15)

From (14), a,n is obtained by

Apn="Qum_1/Pm_y (16)
Once a,, is determined, remaining unknowns
are obtained by (5) and (6). In this case, since
we have already known Q,_;, (6) can be re-
written as

Pp=Pp 1+ 0nnQn-1 an
Thus required computations in (5), (15), (16)
and (17) are about

2[m(m—1)/2]+2m=m(m+1)
Consequently total computations in the Yule-
Walker method are about

(m+1) (N+m/2)

In the Burg method, if ACF is not needed,
we must evaluate equations (5), (6), (9), (10)
and (12) for estimating a power spectrum.
Hence the total computations in the Burg meth-
od are

(m+1) (5(N—m) +3m)=(m+1) GN—2m)

Consequently the ratio of required computa-
tions between the Yule-Walker and the Burg
methods is

(6N—2m)/(N+m/2)
If we assume N>m, then the Burg method
requires about five times more computations
than the Yule-Walker method.

STABLENESS OF BURG’S ALGORITHM

Another shortcoming of the original Burg
method is that equation (12) has a mathematical
irrationality. Based on (12), the estimated coef-
ficients of PEF sometimes diverge. In fact, we
fail to obtain reasonable power spectra for the
following time series

xy=exp[—c(k—1)Isin(2nfodt(k—1)] +n

k=1,2,--,N (18)
where ¢ is a positive constant, f, a certain
frequency and n the Gaussian noise. Fig. 1, for
example, when ¢=0.05, f;=0.05(Hz), dt=1
(sec) and N=101, shows the Akaike’s FPE
(Akaike, 1969;1970) for the noise-free time
series (the amplitude of noise is () in the range
of m=]t09. The Akaike’s FPE is the variance
of ‘prediction error in applying PEF to a time

-1 T T T T T T T
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PEF ORDER (m)

Fig. 1 Akaike’s final prediction errors estimated by
the original and the modified Burg methods.
The tested time series is zz=exp[—0. 05(k—
1) sin(0: 1z(k—1)], %k=1,2,---, 101.
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series. That is, v

FPE=E[|z:— 2| (19)
where E[ ] represents the ensemble mean and
Z; is the prediction of z,. When we design m+1
long PEF using N-point time series z; (k=1,
2,...,N), the FPE is given by

FPE,;,=P,(N+m+1)/(N—-m—1)  (20)
The FPE’s in Fig. 1 (marked “Original”) have
no local minimum in the range of m=] to 9,
because P, in (20) diverges (i.e., decreses too
rapidly).
26.

To avoid such a divergence, the first term of
(4) or (8) should be ignored. Then the alterna-
tive output power =,/ when the PEF is oper-
ated in only forward direction is

The minimum FPE occurs in m=

, 1 N-mysm 2
T = N —m V(kz=:oamkxl+m—k>

N—m
:ﬁg (fml+ammbm!)2 (21)

Using the condition (11), we get

N—m N—m
Amm=— — l=Zl I7mlfml/l=z1 b?nl (22)

The algorithm using (22) is refered as modi-
fied Burg method in this paper. The line marked
“Modified” in Fig. 1 shows the Akaike’s FPE's
estimated by the modified Burg method for the
same time series as in the original Burg meth-
od. A minimum value appears at m=3, so we
can regard the optimal length of PEF as 4.

Fig. 2 shows power spectral densities obtain-
ed by the original and the modified Burg meth-
ods with each PEF length of 4. From this
illustration we see that the modified Burg method
gives a peak at 0.05 Hz, but the original Burg
method has a some frequency shift. Such inac-
curate frequency estimate for sinusoidal data in
the original Burg method has been pointed
out by many investigators (e.g., Barradale and
Erickson, 1980). Moreover, the original Burg
method requires about 209 more computations

100 T T T T T T T T

_  Modified

Original |

POWER RELATIVE TO PEAK (%)
w
<

0 .05 |
FREQUENCY (Hz)
Fig. 2 Power spectra estimated by the original and
the modified Burg methods. The tested . time
series is zr=exp[—0. 05(k—1)Jsin(0. 1z (k—
DI, k=1,2,--,10L
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Fig. 3 Akaike’s final prediction errors estimated by
the original and the modified Burg methods.
The tested time series is zz=exp[—0. 05(k—
D] sinf0. Iz(k—1)]+n, %=1, 2, -, 101
where # is the Gaussian noise with amplitude
0. 001.

than the modified Burg method (compare (22)
and (12)). Because of short PEF, the Yule-
Walker’s spectrum (not shown in Fig. 2) is
almost the same as the modified Burg’s one.
Fig. 3 shows the Akaike’s FPE for the time

series with a small Gaussian noise (the ampli-
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Fig. 4 Power spectra estimated by the original and
the modified Burg methods. The tested time
series is zr=exp[—0.05(k—1)Isin[0. 1z(k—
Dl+n,k=1,2,...,101, where n is the Gauss-
ian noise with amplitude 0. 001.

tude of noise is 0.001) in the range of m=1 to

9. The original Burg method also fails to have

a minimum FPE in the range of m=1to 9, and

the minimum FPE appears in m=40. The

modified Burg method, however, is stable for
the time series with the small Gaussian noise,
and the minimum FPE also appears in m=3,

Fig. 4 shows power spectral densities for the

time series with the small Gaussian noise. From

Figs. 2 and 4, we see that the modified Burg

spectrum is not affected with the small Gauss-

ian noise.

COMPUTATION OF POWER DENSITY

A power density for density frequencies can
be computed by equation (1). Some authors
(e.g., Hino, 1977; Barrodale and Erickson,
1980) wuse equation (1) itself, direct cale-
ulation. However, since equation (1) involves
a complek exponential function, large comp-
utation% are required. Required computations at
the summation of (1) are approximately m

times of sine and cosine functions, respectively,

and 2m times of multiplication.
If we rearrange (1)

P(f)=Palt/| 3, amexp(—2nifbAD)|* (23)

where ano=1, then we can use fast Fourier
transforms (FFT). In this case, Goertzel’s alg-
orithm (e.g., Robinson, 1967, p.279) is conv-
enient as the FFT. In the Goertzel method,
the summation in (23), S(f), is calculated by

S(H =kZZ}oamkeXp( —2mifkds)

= (14 Sycosw—3S;) +iS;sinw (24)
where w=2xf4¢t is the non-dimensional angular
frequency, and Sy and S, are obtained by the
following recursion formula.

Se_1=ame+ 28,050 — Sp11,

k=m,m—1,-,1 (25)
Initial values for (25) are
Sm+1=Sm=0

When we use the recursion formula, required
computations at the summation of (23) are app-
roximately 1 time of sine and cosine functions,
respectively, and m+2 times of multiplication.
Since sine or cosine functions require about four
times more computations than multiplications,
then the ratio of computations between (23)
and (1) is

2mXxX4+-2m __  10m
2x 4+ (m+2) m—+10

Therefore, for large m the procedure using the

Goertzel method is about ten times faster than

the conventional one.

DISCUSSION AND CONCLUSIONS

The Burg methd has higher resolution for
short sample sinusoidal data than the Yule-
Walker method (Radoski et al., 1975). In the
Yule-Walker method ACF should be known
before computing PEF coeflicients (solving(2)).
In computing the ACF we usually assume z;,=
0 for i>N in (13). Thus the ACF in (2) invol-

ves some error, and the error increases with



242 Hee Joon Kim

time lag. This means that the Yule-Walker
method using PEF long compared with data
length may give unreasonable power spectra. In
the Burg method, on the other hand, the ACF
is not needed a priori and is obtained from PEF
coefficients (see equation (7)). This is one of
the superiority of Burg method over the Yule-
Walker method. In the method of Blackman and
Tukey, the appropriate length of ACF is known
to be shorter than about 10% of data length
(e.g., Hino, 1977, p.186). This criterion seems
to be also useful in the Yule-Walker method.
In the case of the tested time series of (18),
in fact, the Yule-Walker’s spectrum with m=3
(not shown in Fig. 2) was almost the same as
the modified Burg’s spectrum. Furthermore, the
Yule-Walker method is about 4 times more
efficient than the modified Burg one.

Ulrych and Bishop (1975) suggested that the
optimal length of PEF can be determined by a
local minimum of Akaike’s FPE. In equation
(20), P, usually decreases monotonically with
m, but (N+m+1)/(N—m—1) increases mono-
tonically. Thus, if the P,, decreases moderately
with m, then the FPE has a minimum value
at a certain m, The original Burg method,
however, sometimes fails to have a minimum of
FPE (Figs. 1 and 3), partly because of too
much decreasing rate or divergence of P,, which
is resulted from the mathematical irrationality
in (12). In the case of the tested data of (18),
the original Burg method gives the unreasonable
spectrum with some frequéncy shift, and the
spectrum is affected by the amplitude of added
noise (Figs. 2 and 4). This shortcoming can be
avoided by using the modified Burg method,

In this paper the computational efficiency and
the stableness of Burg’s algorithm were discuss-
ed and the modified Burg method was propos-
ed. The computational efficinency of the orig-
inal Burg method is only about 1/5 and 4/5
compared with that of the Yule-Walker and the

modified Burg methods, respectively. Besides,
the original Burg method is sometimes unstable
becauue it involves mathematical irrationality.
For the data lacking in line spectrum, which is
frequently encountered in geophysical problems,
the original Burg and Yule-Walker methods
usually give similar results (e.g., Hino, 1977,
p. 213). Therefore the maximum entropy spectral
analysis should be carried out either by the
Yule-Walker method or by the modified Burg
one. The choice of which methed is useful can
be made by the length of PEF. When the
length of PEF is shorter than about 10% of
data length, the Yule-Walker method will be
useful due to its computational efficiency. When
the length of PEF is longer than about 10% of
data length, the modified Burg method will be
useful due to its superior resolution. Finally, I
recommed the use of the Goertzel’s algorithm in
computing the power density for densired freq-
uencies. For long PEF, this method has an
efficiency about ten times more than the conv-
entional one.
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