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Linear Inversion of Heat Flow Data

Wook Han

ABSTRACT: A linear inversion of heat flow values using heat production data with reliable

value is studied in this work. To evaluate 2-D problem, a thin vertical sheet model is considered.

Making use of a relation based on potential theory, a new relation between graa and A, is derived.

The forward calculations with noise and without noise are shown. The inversion of random search

is comparable to that of ridge regression method. The agreements between the computed and best

fit after inversion suggest the importance of random search method in the inversion technique.

INTRODUCTION

The interpretation of heat flow values due to
the sources of heat production may be complic-
ated by a lot of factors. However, this problem
can be alleviated to a certain degree if the acc-
urate information of the heat sources on the
typical rock types is available.

T collected the heat production data in the
upper crust during the past three years. The
heat production data with reliable value can
give constraints on the vertical distribution of
the heat source. This study is an experiment of
the use of heat production and heat flow values.

To evaluate this problem, I chose to consider
a thin vertical sheet model. I obtained eight
data sets of heat prodction for heat flow values
(sedimentary, igneous and metamorphic rocks).
I am interested in determining the vertical dis-
tribution due to geochemical (isotopic) evolution
of the continental crust.

Ridge regression inversion is used to estimate
heat production values from heat flow data. The
heat flow values are inverted to get the available
information on the radioactive elements in the
continental upper crust.
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THEORY

Forward problem

Consider a thin vertical sheet with heat prod-
uction contrast (A4,) as the Figure 1. Simmons
(1967) has shown the relation of the gravity to

_get theoretical surface heat flow values.

(1) q.=F.Ay/27Gp
g.=heat flow at the surface
Ay=heat production
F,=gravity
p=density
This equation is valid for the steady-state con-
diton of heat production. '
The factors contributing to the problem of
nonuniqueness are shown by Al-Chalobi (1971)
and Hohmann (1982), From their discussion,
we are concerned with the effects introduced by
two factors because of considering the case of
an exact model calculation: (a) heat flow values
on some plane may be produced by a lot of
possible solutions down so a certain depth; (b)
observational errors resulting from measureme-
nts, reductions (radioactive part+mantle heat
flow) and time (~1975, and 1975~1982) are
always present on the field observations.
The difficulty is to " determine " the - separate
values for heat flow, time and equipment for
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0 (a) potential theory shows a heat flow anom

aly on some plane down to a certain depth

zi (b) isotopic evolution of the continental crust
shows the vertical distribution of the radioactive

2

elements.

From Figure 1, the gravity of the model is
given by

. ot
’ gz"szsf (x—x(’ézjgz—z’)zpdxldz,

where prime shows new coordinate.

Fig. 1. Very thin vertical sheet
Using identities
the measurements. But the heat production and

the transfer mechanism in the upper crust can g=—Gp <ﬁ In(F*+ (21 —20)* 25 -
be determined with confidence. And to determine
depth is another difficulty. However, the problem
can be solved by the isotopic evolution in the —<(,Bln(,82+ (z—21)%)—28
continental crust and can be linearly dependent.
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The considerations about the forward problem (z—21) /x

are as follows; B=z—z'
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From (1)
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where z is the horizontal distanece and z is the

+2(z—=z,) {tan

depth. Using (2) 2-D calculations are shown in
Figures 2 and 3.

Inverse problem

For this study, the summary of ridge regres-
sion inversion given by Marquardt (1970),
Inman (1675) and Hohmann (1982) is reviewed
in detail.

Because of the linear condition of the equa-
tion, Taylor’s series expansion of the first order
in the unknown parameters are given as

4g=AdP+¢
where A is the 2Xm matrix of derivatives. A
is a related small change in model parameter 4P
to a small change in data Jq. & refers to a
vector of error in the data points.

The ridge regression estimate of 4P, designed
to control the instability associated with Ordi-
nary Least Squares (OLS), is

(ATA+62D)-1ATdq
with in the range 1074<62<1.0 from Hoh-
mann (1982), where I is the identity matrix and
6% is added to the diagonal elements to weigh
out the very small eigenvalues resulting from
poorly determined parameters. The estimator is
a function of 62. ‘

Perfect data are complete. Completeness dep-
ends upon the particular problem. Even theugh
we never have perfect data, analyzing the pro-
blem for perfect data provides valuable insight.

In heat flow study ‘we assume a layered model
from petrological, geochemical and geophysical
evidence and hope the solution may be useful.

So far, I have considered only the - case of
magmatic body intrusion. Since I am using data
set by a un-weight matrix (W), uncorrelated
errors and constant varianee according to Dr.
Hohmann’s advice. Three noise levels (¢,=+
1.0 mWm™2, +1.4; 10% of radiogenic heat
flow, +2.8; 20% of radiogenic heat flow: see
Discussion) are added to the data sets. These
noise levels are generated by random number
generator. Here, noisy data are allowed to have
much influence on the inversion in the case of
=+2.8mWm™2 noisy data.

The equation for parameter then becomes

P=(ATA+-02)1ATq

If standard deviations (o,) are known for
each data point, the weighting can be selected.
In this problem, I use the known standard dev
iations of the noise levels added to the data (o,
==+1.0 mWm™2),

To address how accurately the parameters are
calculated, I would like to get the standard
deviations of the parameters. Hohman (1982)
has shown this may be achieved by the covar-
iance matrix

cov(p) =(ATA)TATHA(ATA)?
where ¢ is the covariance matrix of error.
Assuming uncorrelated errors, ¢ becomes a
diagonal matrix with 6,2, The square root of
the appropriate diagonal element of cov (p)
gives an standard deviation.

Random number generation

The subroutine is used for uniform number
generator based on the theory and suggestions
by G.E. Forshythe et al (1977). The results.
are followings;

(a) case (£1.0mWm~2, intervals=2km)

¢raa=5. 2mWm™2
7.4mWm™2
7.7mWm™2
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10. 5mWm™2
11. 9mWm™2
12. smWm™
13.2mWm™2
11.6mWm™2
10. 6mWm™2
7.8mWm™2
4, 8mWm™2
(b) case (+1.4mWm™2)
Graa—4. 4mWm~2
5.8mWm™2
8. 4mWm™2
10. 5mWm™2
12. ImWm—2
13. ImWm™2
12.2mWm™2
10. 5mWm~2
11.0mWm™2
8.6mWm™2
5.5mWm~2
{c) case (+2.8mWm™2)
groa=3.0mWm2
4.7mWm2
6. 6mWm2
13. 2mWm™2
9. 5mWm™2
12. 2mWm™2
11.0mWm™
10. 7mWm™2
7.0mWm™2
5.9mWm2
41. mWm™2
To show the effect of heat production data on
the interpretation of heat flow values, I consid-
ered three cases. In each case, the values are
followings:
(1) with free noise
@raa=4, 7TmWm™
6. 5mWm™2
8.6mWm™2
10. 6mWm™2
12. I1mWm™2

12. 7mWm™
12, 5mWm™2
11. 5mWm™2
9.8mWm~2
7.5mWm™2
5, 3mWm~2
(2) with noise due to magmatic body
graa=5, 0(mWm™?
7.0mWm™2
9. 2mWm™?
11. 3mWm™2
12.9mWm~?
13. 4mWm~2
13. ImWm™2
12. 0omWm~2
10. 2mWm™2
7.8mWm2
5.6mWm™2
(3) with noise by random number
(a) case (£1.0mWm™2)
(b) case (£1.4mWm™2)
(¢) case (+2.8mWm™2)

A large value of 62 results in the algorithm
which is slow to converge. However it is very
stable. Bevington (1969) and Hohmann (1982)
show an appropriate values for 62 in the inve-
rsion process. I have considered the noise level
according to high radioactive " magmatic rock.
In this way, noisy data are not allowed to have
much influénce on the inversion.

Parameter estimation

Finding a suitable solution to the geophysical
parameter estimation usually involves minimizing
an objective function. The residuals (&) from
the linearized problem is the misfit.

e=Y— Az
where Z is the vector of estimated parameter.

There are L1, L2 and L. norms for this
technique. L] leads to a maximum likelihood
estimate when the data contain-independent
errars with Laplace distribution. Values more
than: 2 standard deviations from the mean are

~
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much more probabale under Laplace than Gauss
distribution.

L2 produces a maximum likelihood estimate
when the data contain error with Gauss distri-
bution. When the data contain only, this type
of noisy, L2 estimate is the best to choose. L1
may be useful when geologic noise is significant
(Claerbout and Muir, 1973).
errors in the data points. The largest residual

L..is ' senitive to

has a minimum value. This is useful when the
noise is negligible.

L1 minimization

Parameter estimation by L1 minimization and
the sophisticated sweepout method is accomplis-
hed by the linear programming (Gass, 1969).
This study for the positivity, objective function,
and constraint equation may be solved by mod-
ified simplex algorithm using subroutine zx4LP
in the IMSL on the UUCC.

After rewriting,

z
LA T :—1:] |et|=p
8x8° 8x8 8x8 | __|8x1
24%X1
And the L1 objective functicn can be written
x
lleli=C o0 T T3 et
8X1 8X%X1 8x1 -
24X1

Thus we can solve the problem as a linear
program. But the physical constraints over the
model are very important for the obje ctive
function and should be appropriate. Otherwise
the objective functions are often unbounded.

Random search

The random search method is designed for
thoroughness of search rather than for speed
of convergence. But this method achieves a
reasonable compromise between the conflicting
requirements of search and convergence. The
position of the global minimum can be found
with sufficient confidence. The approximation

converges siowly to minimum. However, the

search provide the better figures with minimum
and maximum values in the crust because sim-
plex method is insensitive to the objective fun-
ction or the physical constraints about the inv-
erse model.

In practice, 0.1 mWm™2 magnitude has little
meaning but I would like to use 0. 1 magnitude
to compare with three cases. The best fit values
can be obtained with the range of error (0.1
#Wm™?) after the calculation of inversion. The
heat production values after inversion are follo-
wings:

(1) with free noise

1.65, 3.62, 3.51, 2.70
1.65, 1.79, 1.98, 1.81
—results by random search method
1,83, 3.50, 3.46, 2.68
1.41, 2.01, 2.06, 1.84

This search method converges slowly and it
takes about 30 min. by 150 random addresses.
The range of heat production values in the
continental crust is 1.0#Wm™ to 4, 0pxWm™3,
We used these values for minimum and maxi-
mum. These are reasonable values in the real
earth and heat production values after inversion
compare favourably with ridge regression. The
search algorithm is simple and efficient. However,
the method is not better than ridge regression.

(2) with noise due to magmatic body

1.66, 3.61, 3.47, 2.69
1.62, 3.01, 2.12, 1.78 )

(3) with noise level by random number gen-
erator

(a) case (4-1.0 mWm™2)
1.94, 2.74, 4.34, 3.14
1.86, 2.22, 1.42, 1.13
(b) case (41.4 mWm-2)
1.41, 4.20, 2.47, 38.81
1.20, 2.30, 1.70, 1.76

(¢) case (+£2.8 mWm™2)

2.76, 3.34, 2.77, 2.98
1.77, 2.08, 1.84, 1.64
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Fig. 5. (a) case with noise

In each case, the parameters of the model are
used to calculate radiogenic heat flow (qreq)
from the forward model. These heat flow values

except the case of +2.8 mWm™2 are not far

from the original points. Both data sets are
shown by comparing with different symbols in
Figures 4,5,6 and 7. In each figure, the orig-
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Fig. 7. (¢) case with noise

inal data is plotted along with the best fit

values after inversion.
DISCUSSION

The ridge regression method is a curve matc
hing algorithm which minimizes the least squares
error between the observed and calaulated data.
This requires finding the minimum. Heat flow
measurements in a geothermal environment can
be mncertain to within as +20% and the unc-
ertainty in the inter-laboratery is about =+10%.
In this case, statistical significance can be gai-
ned by weighting the data from the uncertainty

.
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of the measurements.

We have utilized an inversion for estimating
heat sources. The field test from data collection
suggests that for the geologic and geochemical
settings, the forward model is adequate for
matching the observed heat flow profile. The
model ignores hydrologic problems with conta-
mination and heat refraction. However, this
modelling makes it practical for preliminary
evaluation in several heat flow provinces (Boh-
emian massif, Superior province, Brazilian high-
land, etc.).

CONCLUSION

The interpretation of heat flow data on the
continental crust due to the vertical distribution
of radioactive elements with depth through
random search can be greatly enhanced by the
good fit small error (0. 1#Wm™3), and reasonable
range 6% (1073~107Y).

From this study I can confirm the physical
model of the continental upper crust. A measure
of enhancement depends upon the accuracy of
the radioactive elements in the lower crust and
mantle heat flow. There is a benefit to unders-
tand the thermal state of the lithosphere.

Further studies may be continued as follows;

(a) effects of the distribution of heat sources
in the lower crust and upper mantle.

(b) comparison with other geophysical models
(magnetic, gravity).
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