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1. Introduetion

Let us consider a variety
Va= {z : zEC"+1, %la1+ ... +ZIl+1411+1=O},

where ah •••, all+l are integers greater than 1, and n>2. The ongm
is the only critial point of Va. The intersection of Va with the 211+1
dimensional standard sphere 8211+1

~a=~ (a1o o •• , .all+1) = Va n82"+1,

called a Brieskorn manifold, has been studied by many authors. A
Brieskom manifold is called a Brieskorn sphere if it is a homotopy
sphere. For a= (ah •••, all+1) , let G(a) be the graph defined as follow:
G(a) has n+1 vertices aI, ... , all+1. Two of them, say ai, ab are
joined by an edge if and only if the greatest common divisor (ai' aJ)
of ai and aJ is greater than 1. Brieskom [lJ proved;

THEOREM. Let n>2. Then ~a=.E(ah ..., an+1)=VanS2"+1 is a 2n-l
dimensional topological sphere if and only if G(a) satisfies one of the
following conditions:
1) G(a) has at least two isolated points,
2) G(a) has one isolated point and at least one connected component K

with an odd number of vertices such that (ai, aJ) =2 for ai, ajEK
(i=t= j).

The construction of the Brieskom manifold was generalized by Hamm
[2J and Randell [7]. Let

_+m
ft (%10 ••• , %1I+m) = ~ aij%jaij, 1::;; i::;; m,

j=l

be polynomials having only one critical point at the origin, where aij
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are integers greater than 1, aij are real numbers, and n>2. Set

Vi= {z : zECn+m, fi(Z) =O},
Va = VI nV2 n... nVm,

and
L:a= VanS2(n+m)-I.

Then, each Vi - to} is a smooth manifold of dimension 2n+2m-2. This
L:a is called a generalized Brieskorn manifolds. Moreover, it is called
a generalized Brieskorn sphere if it is a homotopy sphere.

For our purpose, we assume that
( I) grad f1> ... , grad f m are linearly independent on Va- to} ,
(II) L:a is a homotopy sphere (of dimension 2n-1).

REMARK. (a) Assumption ( I ) is true if the aij are independent of
i and the real matrix (aij) has no zero subdeterminant. Of course, it
is easy to choose (aij) with this property. And va=vIn ... nVm is a
complete intersection with its only singularity at the origin, so that
dim L:a=2n-1.

(b) Let aij be independent of i, say aij=aj for all i, and assume
that the real matrix (aij) has no zero subdeterminant. Construct a
graph G (a) as before, and let :If a be the number of the connected
components K of G(a) such that K has odd vertices and for two
different vertices ai, aj of K, (a;, a) =2. Then, (by Hamm's
theorem [2J) #a?m+1 implies that L:a is a homotopy sphere.

For a given prime p and a generalized Brieskorn sphere L:a' define
a free cyclic ZFaction on L:a as follows: Choose natural numbers bj so
that aijbj=h (mod p), h*O for all i, j. Let T(bh ... , bn+m) be a map
on Cn+m defined by

T(bh "', bn+m) (Zh ... , zn+m) = (~bIZh ... , ~bn+mzn+m),

where (,=exp(2tci/p). The map T(bh ... , bn+m) generates a cyclic
group Zp of order p, under which the homotopy sphere L:a is invariant.
The orbit space L:a/Zp will be called a lens space, and denoted by
L(p; a; b). The map T(bh ... , bn+m) will be denoted by T when there
is no ambiguity. Note that we can assume that aijbj =l (mod p) for
all i, j without loss of generality by choosing a suitable generator of
Zp.
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2. Main Results

Define a Zp-action on L;axC by T(z, w) = (T(z), Cw), where
C=exp(27ri/p), and T(z) = T(bh ... , bn+m)(z) as before, so that the
natural projection from L;a X C to L;a is equivariant, that is, it commutes
with the Zp-actions. By taking quotients, one can get the canonical
complex line bundle r over the lens space L(p; a; b). Similarly, one
can get rc=r0 '" 0r, (c times) with a Zp-action on L;axC given by
'fez, w) = (T (z), Ccw ). It can be proved easily that

rb1+ ... +rbn+m=L;aXCn+m/TX T,

where

(TX T) (z, (Wh .•• , wn+m»
= (T(z), ,b1Wh ... , Cbn+mwn+m).

First, we describe the tangent bundle of a lens space.

THEOREM 1. Let r=r(L(p; a; b» and e denote the tangent bundle
and the trivial one-dimensional real bundle over L(p; a; b) respectively.
Then r+e+m(re(r» is isomorphic to re(rb1 + ... +rbm+n) over L(p; a;
b).

Proof. Recall that
.+m

f;(zh ... , zn+m) = ~ a;jz /ii,
,=1

V;-f;-l(O), l::;i::;m,
Va= VI n... nVm,

and

L;a= VanS2(n+m)-1 (transversely).

Let z-(.) denote the tangent bundle and J,.I(.) the normal bundle of
the space (.) in Cn+m. Then

J,.I(L;a) =J,.I(S2(n+m)-1) +J,.I(Va)

by transversality, and

J,.I(Va) =J,.I(V1) +···+J,.I(Vm).

Hence, the trivial bundle L;aXCn+m is isomorphic to

t'(L;a) +J,.I(L;a)
=t'(L;a) +J,.I(S2(n+m)-1) +J,.I(Va)
=r(L;a) +J,.I(S2(n+m)-1) +J,.I(V1) +... +J,.I(Vm)
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over 2:". But v(82Cn+m)-1) is clearly isomorphic to the trivial bundle e
over 2:". To see v(Vi)'s over 2:", let I : Cn+m --C be a polynomial
defined by

n+"
I(Zh ... , zn+m) = 2: ajzj"j,

j=l

(as one of I/s), and let V 1-1 (0). Then

grad I(z) = (a1a1z1"Cl, ..., an+man+mzn+m"n+m-l)

is a cross section of v(V), and v(V)=C·grad I. Now, with the
assumption that ajbj=l (mod p) for all j, we can easily obtain that
T(grad I(z»=e;:·grad I(Tz). Hence, for each i=l, ..., m, grad li
is a cross section of v(Vi), v(Vi)=C·grad li' and T(gradli(z»=e;:
grad li(Tz) over 2:". Define

lfi : .. (2:,,) +R+Cm-- 2:"xcn+m
by

lfi(vz , r, Wh ••• , wm)
= (z, v+rz+w1 grad 11(Z) +···+wm grad Im(z»,

where V z is a tangent vector at z, and R, Cm represents the trivial
bundle RX2:", CmX2:" respectively. Then lfi is an equivariant isomor­
phism with an action dT+I+(·e;:) on .. (2:,,)+R+cm. Therefore, by
taking quotients, it is proved.

Recall that the standard lens space V n- 1(p) is defined as the orbit
space of 8 2n- 1 by the linear action T(l, ...,1). Since the principal Zr
bundles

82n- 1__ VlI-1(p) and 2:" -- Vn-1(p; a; b)

are (2n-l)-universal, there are maps

I: VlI-1(p) -- L2n-1(p; a; b),
g : Vn-1(p;a;b) __ Vn-1(p)

such that the induced bundles

I *r=r and g*r=r,
where r is the canonical bundle over the suitable lens space. Hence,
we have

CoROLLARY. The lens space L(p; a; b) is stably parallelizable, i. e.,
its tangent bundle is stably trivial, il and only il m (re(r» is stably
isomorphic to
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re (r b1 ) +re (rb:;) + ... +re (rbn+m)

over the standard lens space L2n-l (p), where r represents the canonical
line bundle over V n- 1(p).

Let v be a prefered generator for H2(L(p; a; b); Z) and u its mod
2 reduction. Then, we obtain the following total Pontrjagin and
Stiefel-Whitney classes of a lens space:

n+m
THEOREM 2. 1) P(L(p; a; b»=(1+v2)-m Il (1+b j

2v2).
;=1

n+m
2) w(L(p; a; b» = (H-u)-m n Cl+bju).

i=l

COROLLARY. If the lens space L(p;a;b) is stably parallelizable, then

Cl +v2)m= (1 +b I
2V2) (1 +b22V 2) '" (1 +bn+m2v2)

in ~ Heven(Vn-l(p) ;Zp) ~Zp[vJ/(vn).

REMARK. Let L (p; a; b) be defined as an orbit space of a Brieskorn
sphere so that m=l. Then, we have in Theorem 1

z-+8+m (re (r» ~re(rbl+ ... +/n+l).

This is a correction of Orlik's Theorem 3([6J, p.252). And Theorem
2 is a correction of Orlik's Theorem 4 of the same paper. Note that
L(p; a; b) is a submanifold of codimension 2 of the classical lens
space Vn+l(p : bI, ••• , bn+1). It is well-known that

dVn+l ( p; b1, ... , bn+1» +8
is isomorphic to

re(rb1+rb2+ ... +/n+l).

Hence, by Theorem 1, the normal bundle of L ( p; a; b) 111

Vn+l( p; bI, ••• , bn+1) is stably isomorphc to re(r), whicih is not trivial.
This gives a correction of an Orlik's computation of the normal bundle
([61 p.252).
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