THE TANGENT BUNDLE OF SMOOTH HOMOTOPY LENS SPACES

JIN HO KWAK

1. Introduction

Let us consider a variety

$$V_a = \{z : z \in C^{n+1}, z_1^{a_1} + \cdots + z_{n+1}^{a_{n+1}} = 0\},$$

where $a_1, ..., a_{n+1}$ are integers greater than 1, and n>2. The origin is the only critial point of V_a . The intersection of V_a with the 2n+1 dimensional standard sphere S^{2n+1}

$$\sum_{a} = \sum (a_1, \ldots, a_{n+1}) = V_a \cap S^{2n+1},$$

called a *Brieskorn manifold*, has been studied by many authors. A Brieskorn manifold is called a *Brieskorn sphere* if it is a homotopy sphere. For $a=(a_1, ..., a_{n+1})$, let G(a) be the graph defined as follow: G(a) has n+1 vertices $a_1, ..., a_{n+1}$. Two of them, say a_i , a_j , are joined by an edge if and only if the greatest common divisor (a_i, a_j) of a_i and a_j is greater than 1. Brieskorn [1] proved;

THEOREM. Let n>2. Then $\sum_a=\sum_a(a_1, ..., a_{n+1})=V_a\cap S^{2n+1}$ is a 2n-1 dimensional topological sphere if and only if G(a) satisfies one of the following conditions:

- 1) G(a) has at least two isolated points,
- 2) G(a) has one isolated point and at least one connected component K with an odd number of vertices such that $(a_i, a_j) = 2$ for $a_i, a_j \in K$ $(i \neq j)$.

The construction of the Brieskorn manifold was generalized by Hamm [2] and Randell [7]. Let

$$f_i(z_1, ..., z_{n+m}) = \sum_{j=1}^{n+m} \alpha_{ij} z_j^{a_{ij}}, 1 \le i \le m,$$

be polynomials having only one critical point at the origin, where a_{ij}

Received April 21, 1984.

are integers greater than 1, α_{ij} are real numbers, and n>2. Set

$$V_i = \{z : z \in C^{n+m}, f_i(z) = 0\},\$$

 $V_a = V_1 \cap V_2 \cap ... \cap V_m,$

and

$$\sum_{\alpha} = V_{\alpha} \cap S^{2(n+m)-1}$$
.

Then, each $V_i - \{0\}$ is a smooth manifold of dimension 2n+2m-2. This \sum_a is called a generalized Brieskorn manifolds. Moreover, it is called a generalized Brieskorn sphere if it is a homotopy sphere.

For our purpose, we assume that

- (I) grad f_1 , ..., grad f_m are linearly independent on V_a - $\{0\}$,
- (I) \sum_a is a homotopy sphere (of dimension 2n-1).

REMARK. (a) Assumption (I) is true if the a_{ij} are independent of i and the real matrix (α_{ij}) has no zero subdeterminant. Of course, it is easy to choose (α_{ij}) with this property. And $V_a = V_1 \cap ... \cap V_m$ is a complete intersection with its only singularity at the origin, so that dim $\sum_a = 2n-1$.

(b) Let a_{ij} be independent of i, say $a_{ij}=a_j$ for all i, and assume that the real matrix (a_{ij}) has no zero subdeterminant. Construct a graph G(a) as before, and let $\#_a$ be the number of the connected components K of G(a) such that K has odd vertices and for two different vertices a_i , a_j of K, $(a_i, a_j)=2$. Then, (by Hamm's theorem [2]) $\#_a \ge m+1$ implies that Σ_a is a homotopy sphere.

For a given prime p and a generalized Brieskorn sphere \sum_a , define a free cyclic Z_p -action on \sum_a as follows: Choose natural numbers b_j so that $a_{ij}b_j=h \pmod{p}$, $h\neq 0$ for all i,j. Let $T(b_1,...,b_{n+m})$ be a map on C^{n+m} defined by

$$T(b_1, \ldots, b_{n+m})(z_1, \ldots, z_{n+m}) = (\zeta^{b_1}z_1, \ldots, \zeta^{b_n+m}z_{n+m}),$$

where $\zeta = \exp(2\pi i/p)$. The map $T(b_1, ..., b_{n+m})$ generates a cyclic group Z_p of order p, under which the homotopy sphere Σ_a is invariant. The orbit space Σ_a/Z_p will be called a *lens space*, and denoted by L(p; a; b). The map $T(b_1, ..., b_{n+m})$ will be denoted by T when there is no ambiguity. Note that we can assume that $a_{ij}b_j=1 \pmod{p}$ for all i, j without loss of generality by choosing a suitable generator of Z_p .

2. Main Results

Define a Z_p -action on $\sum_a \times C$ by $\overline{T}(z,w) = (T(z),\zeta w)$, where $\zeta = \exp(2\pi i/p)$, and $T(z) = T(b_1, ..., b_{n+m})(z)$ as before, so that the natural projection from $\sum_a \times C$ to \sum_a is equivariant, that is, it commutes with the Z_p -actions. By taking quotients, one can get the canonical complex line bundle γ over the lens space L(p; a; b). Similarly, one can get $\gamma^c = \gamma \otimes \cdots \otimes r$, (c times) with a Z_p -action on $\sum_a \times C$ given by $\overline{T}(z,w) = (T(z), \zeta^c w)$. It can be proved easily that

$$\gamma^{b_1} + \cdots + \gamma^{b_{n+m}} = \sum_{a} \times C^{n+m} / T \times T$$

where

$$(T \times T)(z, (w_1, ..., w_{n+m}))$$

= $(T(z), \zeta^{b_1}w_1, ..., \zeta^{b_{n+m}}w_{n+m}).$

First, we describe the tangent bundle of a lens space.

THEOREM 1. Let $\tau = \tau(L(p; a; b))$ and ε denote the tangent bundle and the trivial one-dimensional real bundle over L(p; a; b) respectively. Then $\tau + \varepsilon + m(\operatorname{re}(\gamma))$ is isomorphic to $\operatorname{re}(r^{b_1} + \cdots + r^{b_{m+n}})$ over L(p; a; b).

Proof. Recall that

$$f_i(z_1, \ldots, z_{n+m}) = \sum_{j=1}^{n+m} \alpha_{ij} z_j^{aij},$$

 $V_i = f_i^{-1}(0), \quad 1 \le i \le m,$
 $V_a = V_1 \cap \cdots \cap V_m,$

and

$$\sum_a = V_a \cap S^{2(n+m)-1}$$
 (transversely).

Let $\tau(\cdot)$ denote the tangent bundle and $\nu(\cdot)$ the normal bundle of the space (\cdot) in C^{n+m} . Then

$$\nu(\sum_a) = \nu(S^{2(n+m)-1}) + \nu(V_a)$$

by transversality, and

$$\nu(V_a) = \nu(V_1) + \dots + \nu(V_m).$$

Hence, the trivial bundle $\sum_{a} \times C^{n+m}$ is isomorphic to

$$\begin{split} \tau(\sum_{a}) + \nu(\sum_{a}) \\ = \tau(\sum_{a}) + \nu(S^{2(n+m)-1}) + \nu(V_{a}) \\ = \tau(\sum_{a}) + \nu(S^{2(n+m)-1}) + \nu(V_{1}) + \dots + \nu(V_{m}) \end{split}$$

over Σ_a . But $\nu(S^{2(n+m)-1})$ is clearly isomorphic to the trivial bundle ε over Σ_a . To see $\nu(V_i)'$ s over Σ_a , let $f: C^{n+m} \longrightarrow C$ be a polynomial defined by

$$f(z_1, ..., z_{n+m}) = \sum_{j=1}^{n+m} \alpha_j z_j^{a_j},$$

(as one of f_i 's), and let $V=f^{-1}(0)$. Then

grad
$$f(z) = (\alpha_1 a_1 \bar{z}_1^{a_1-1}, ..., \alpha_{n+m} a_{n+m} \bar{z}_{n+m}^{a_{n+m}-1})$$

is a cross section of $\nu(V)$, and $\nu(V) = C \cdot \operatorname{grad} f$. Now, with the assumption that $a_j b_j = 1 \pmod{p}$ for all j, we can easily obtain that $T(\operatorname{grad} f(z)) = \zeta \cdot \operatorname{grad} f(Tz)$. Hence, for each $i = 1, \ldots, m$, $\operatorname{grad} f_i$ is a cross section of $\nu(V_i)$, $\nu(V_i) = C \cdot \operatorname{grad} f_i$, and $T(\operatorname{grad} f_i(z)) = \zeta \operatorname{grad} f_i(Tz)$ over \sum_a . Define

$$\phi: \tau(\Sigma_a) + R + C^m \longrightarrow \Sigma_a \times C^{n+m}$$

by

$$\phi(v_z, r, w_1, ..., w_m)
= (z, v+rz+w_1 \text{ grad } f_1(z)+\cdots+w_m \text{ grad } f_m(z)),$$

where v_z is a tangent vector at z, and R, C^m represents the trivial bundle $R \times \sum_a$, $C^m \times \sum_a$ respectively. Then ϕ is an equivariant isomorphism with an action $dT + I + (\cdot \zeta)$ on $\tau(\sum_a) + R + C^m$. Therefore, by taking quotients, it is proved.

Recall that the standard lens space $L^{2n-1}(p)$ is defined as the orbit space of S^{2n-1} by the linear action T(1, ..., 1). Since the principal Z_p -bundles

$$S^{2n-1} \longrightarrow L^{2n-1}(p)$$
 and $\sum_a \longrightarrow L^{2n-1}(p; a; b)$

are (2n-1)-universal, there are maps

$$f: L^{2n-1}(p) \longrightarrow L^{2n-1}(p; a; b),$$

 $g: L^{2n-1}(p; a; b) \longrightarrow L^{2n-1}(p)$

such that the induced bundles

$$f * \gamma = \gamma$$
 and $g * \gamma = \gamma$,

where γ is the canonical bundle over the suitable lens space. Hence, we have

COROLLARY. The lens space L(p; a; b) is stably parallelizable, i.e., its tangent bundle is stably trivial, if and only if $m(re(\gamma))$ is stably isomorphic to

$$\operatorname{re}(\gamma^{b_1}) + \operatorname{re}(\gamma^{b_2}) + \cdots + \operatorname{re}(\gamma^{b_{n+m}})$$

over the standard lens space $L^{2n-1}(p)$, where γ represents the canonical line bundle over $L^{2n-1}(p)$.

Let v be a preferred generator for $H^2(L(p; a; b); Z)$ and u its mod 2 reduction. Then, we obtain the following total Pontrjagin and Stiefel-Whitney classes of a lens space:

THEOREM 2. 1)
$$P(L(p; a; b)) = (1+v^2)^{-m} \prod_{i=1}^{n+m} (1+b_i^2v^2).$$

2)
$$w(L(p; a; b)) = (1+u)^{-m} \prod_{i=1}^{n+m} (1+b_i u).$$

COROLLARY. If the lens space L(p;a;b) is stably parallelizable, then $(1+v^2)^m = (1+b_1^2v^2)(1+b_2^2v^2)\cdots(1+b_{n+m}^2v^2)$

in
$$\sum H^{even}(L^{2n-1}(p); Z_p) \simeq Z_p[v]/(v^n)$$
.

REMARK. Let L(p; a; b) be defined as an orbit space of a Brieskorn sphere so that m=1. Then, we have in Theorem 1

$$\tau + \varepsilon + m \operatorname{(re}(\gamma)) \simeq \operatorname{re}(\gamma^{b_1} + \ldots + \gamma^{b_{n+1}}).$$

This is a correction of Orlik's Theorem 3([6], p. 252). And Theorem 2 is a correction of Orlik's Theorem 4 of the same paper. Note that L(p; a; b) is a submanifold of codimension 2 of the classical lens space $L^{2n+1}(p:b_1, \ldots, b_{n+1})$. It is well-known that

$$\tau(L^{2n+1}(p; b_1, ..., b_{n+1})) + \varepsilon$$

is isomorphic to

$$\operatorname{re}(\gamma^{b_1}+\gamma^{b_2}+\cdots+\gamma^{b_{n+1}}).$$

Hence, by Theorem 1, the normal bundle of L(p; a; b) in $L^{2n+1}(p; b_1, ..., b_{n+1})$ is stably isomorphe to $re(\gamma)$, which is *not* trivial. This gives a correction of an Orlik's computation of the normal bundle ([6], p. 252).

References

- 1. E. Brieskorn, Beiespiele zur Differential-Topologie von Singulatitäten, Inventiones Math. 2 (1966) 1-14.
- 2. H.A. Hamm, Exotische Sphären als Umgebungsränder in spiziellen komplexen Räumen, Math. Ann. 197 (1972), 44-56.
- 3. F. Hirzebruch, Singularities and exotic Spheres, Seminaire Bourbaki, 19e

année, (1966/67) no 314.

- 4. J. Milnor, Singular points of complex hypersurfaces, Annals of Math. Studies 61, Princeton Univ. Press, New Jersey, 1968.
- 5. ____ and J. Stasheff, *Characteristic classes*, Annals of Math. 76 Princeton Univ. Press, New Jersey, 1974.
- 6. P. Orlik, Smooth homotopy lens spaces, Michigan Math. J. 16 (1969), 245-255.
- 7. R. Randell, Generalized Brieskorn manifolds with S¹-actions, Ph. D. Thesis, Wisconsin, 1973.

Kyungpook University Taegu 635, Korea