Abstract
Using the soil bin systems, this study was carried out to analyze the effects of the angular and tilling speed of the rotary shaft with the edge curves which were $30^{\circ}$ and $40^{\circ}$, and the edged blade which were single and double, on the torque requirement of rotary tillage. In the analyses, we developed the mathematical models for the torque requirments of rotary tillage, and analyzed the optimum conditions of each variable for the minimum tillage torque requriements. The results of the study were summarized as follows. 1. The required tilling torque by one rotary blade has the minimum value when the tilling speed of the rotary blade was low, and the revolution of the rotary blade was fast, in general. 2. The torque requirements of single edged blade was decreased to about 81% in comparing with that of double edged blade of which the edge curved angle was $40^{\circ}$ and the tilling speed was 29.40 cm/sec. But, for the mean values, the maximum torque requirements were decreased to 45%, and the mean torque requirements were decreased to 35%. 3. For the edge curved angle, the torque requirements of ${\theta}=40^{\circ}$ were 48% more than that of ${\theta}=30^{\circ}$ in the maximum tilling torque in case that the rotary blade were double edged blade. but, there was not a difference when the rotary blades were single edged blade. The mean tilling torques of ${\theta}=40^{\circ}$ were 6% more when the rotary blade was double edged blade, and were 11% less at single edged blade, than that of ${\theta}=30^{\circ}$. 4. In order to reduce the torque requirements for tilling, the optimum revolutions of the rotary shaft were analyzed as that 204-240 rpm for the double edged blade and 280-320 rpm for the single edged blade.