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Conditions under which the Ratio Estimator is a Best
Linear Unbiased Estimator
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A well-known result in regression theory indicates the type of population under which the ratio
estimate may be called the best among a wide class of estimates. The result was first proved for
infinite populations. Brewer and Royall extended the result to finite populaticns. The result holds
if two conditions are satisfied.

1. The relation between »; and z; is a straight line through the origin.

2. The variance of ¥; about this line is proportional to z;. .

A “best linear unbiased estimator” is defined as follows. €onsider all estimators ¥ of Y that are
linear functions of the sample values ;, that is, that are of the form

Lyt loyyteeeeee +1.y,
where the I's do not depend on the ;, although they may be functions of the z;, The choice of
I’s is restricted to those that give unbiased estimation of Y, The estimater with the smallest
variance is called the best linear unbiased estimator (BLUE),

Formally, Brewer and Royall assume that the N population values (¥;, z;) are a random sample
from a superpopulation in which

yi=px;+ei 6))
where the ei are independent of the z; and z;>>0. In arrays in which z; is fixed, ¢ has mean 0
and variance Az;, The z; (i=1,2,...... ,N) are known.

In the randomization theory, the finite population total Y has been regarded as a fixed quantity.

Under model (1), on the other hand, Y=.BX+£‘,5£ is a random variable. In defining an unbiased
estimator under this model, Brewer and Royall use a concept of unbiasedness which differs from
that in randomization theory. They regard an estimator ¥ as unbiased if E(Y)=E(Y) in repeated
selections of the finite population and sample under the model. Such an estimator might be called

model-unbiased.

Theorem. Under model (1) the ratio estimator Yp=X3/% is a best linear unbiased estimator for
any sample, random or not, selected solely according to the wvalues of the z;.
Proof. Since E(ei/z;)=0 in repeated sampling, it follows from (1) that

Y=pX+3i: E(Y)=pX @
Furthermore, with the model (1) any linear estimator ¥ is of the form
Y=£:liyi=.3ilixi+§n:li3i 3)



If we keep the # sample values z; fixed in repeated sampling under the model (1),
E(V)=p5ka; : VI =250z @
From (2) and (3), Y is clearly model-unbiased if il,-z,»EX, Minimizing V(Y) under this condition

by a Lagrange multiplier gives
2lix;=cx; . l;=constant=X/nz (5)

The constant must have the value X/a% in order to satisfy the model-unbiased condition I3 z;=X.
Hence the BLUE estimator Y is nyX/nf=X35/&=Yr, the usual ratio estimator. This completes the

proof.
Furthermore, from (2) and (3), with I=X/nz,
Yo Y=ol — Seie (X/nZ) (3ei) — 3oei (6
=1 i Y @

N—n
where 3 denotes the sum over the (N—=) population values that are not in the sample. Hence
AX-nDX

5« A X—nD)?(nE) o
V(YR)—WB—Q_——”—FZ(X nL)= o ®
A model-unbiased estimator of 2 from this sample is easily shown to be
r=3 (i~ Re)Y (n—1) ©

where R=%/%, as usual. This value may be substituted in (8) to give a model-unbiased sample
estimate of V(¥p).

The practical relevance of these results is that they suggest the conditions under which the ratio
estimator is superior not only to 5 but is the best of a whole class of estimators. When we are
trying to decide what kind of estimate to use, a graph in which the sample values of y; are plotted
against those of z; is helpful. If this graph shows a straight line relation passing through the
origin and if the variance of the points y; about the line seems roughly proportional to z;, the ratio
estimator will be hard to beat.

Sometimes the variance of the y; in arrays in which z; is fixed is not proportional to z;, If this
residual variance is of the form Av(z;), v(z;) is known, Brewer and Royall showed that the BLUE

estimator becomes

V= XM (10)

Ywz?

where w,=1/v(z;). In a population sample of Greece, Jessen et al. (1947) judged that the residual

variance increased roughly as z;2. This suggests a weighted regression with w;=1/z2, which gives
V= X (X wiyizi) =li<L> an

d Zi

> (wiz®) "

For a given population and given n, V(¥3) in (8) is clearly minimized, given every z;>>0, when
the sample consists of the n largest z; in the population. In [16) small natural populations of the
type to which ratio estimates have been applied, Royall (1970) found for samples having n=2 to



12 that selection of the » largest z; usually increased the accuracy of Yr.

In summary, the Brewer-Royall results show that the assumption of a certain type of model leads
to an unbiased ratio estimator and formulas for V(¥z) and practice in cases where examination of
the v, z pairs from the available data suggests that the model is reasonably correct. The variance
formulas (8) and (9) appear to be sensitive to inaccuracy in the model, although this issue needs
further study.

Further work by Royall and Herson (1973) discusses the type of sample distribuiton needed with
respect to the z; in order that ¥, remains unbiased when there is a polynomial regression of y; on

Z;.
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