On the Conditions for One-sided Inverses to be Two-sided in Group Algebras

by Kyoung Hee Lee Seoul National University, Seoul, Korea

- 1. Introduction. This paper contains some remarks about the Kaplansky's conjecture [1]: In a group algebra, are one-sided inverses two-sided? Hilbert space methods in the discrete group algebra have proved this to be true in characteristic 0; see [3]. But the characteristic p case remains open.
- G. Losey showed this property (that one-sided inverses are two-sided) holds for group algebras of particular groups over arbitrary fields such that finite groups, abelian groups, nilpotent groups, and free groups [2].

Here we examine whether or not the conjecture is true in group algebras of supersolvable groups and solvable groups.

2. **Preliminaries**. A group G is supersolvable if it has a normal series with cyclic factors: $G = G_0 \supseteq G_1 \supseteq G_2 \supseteq G_3 \supseteq ... \supseteq G_n = \{1\}$.

Theorem 1. [4] Let RG be a group ring of a supersolvable group G over a commutative ring with identity R. Suppose that R has no nontrivial idempotents and that if G has an element of prime order p then $p \notin UR$. Then RG has no nontrivial idempotents.

A group G is an \mathcal{F} -group if RG is strongly finite for all strongly finite rings R (A ring R is strongly finite means that for any pair A, B of $n \times n$ matrices over R, $AB = I_n$ implies $BA = I_n$ for all positive intergers n). We know that G is an \mathcal{F} -group if and only if RG is 1-finite, i.e., each right invertible element is left invertible, since $(RG)_n = (R_n)G$.

Lemma 1. A group G is an F-group if and only if it is locally an F-group.

Theorem 2. [2] Let G be a group and H a subgroup of G of finite index. If H is an \mathcal{F} -group, then G is an \mathcal{F} -group.

3. Some Results. First we give a result for supersolvable groups:

Theorem 3. Let G be a supersolvable group and K be a field of arbitrary characteristic. Then each element which is right-invertible is left-invertible in the group algebra NG.

Proof. Let ab=1 for $a, b \in KG$. We set e=ba. Then e is an idempotent, since $e^2=(ba)(ba)=b(ab)a=ba=e$. Hence e is trival by Theorem 1, i.e., e=0 or 1. But if e=0, then 1=(ab)(ab)=a(ba)b=0, a contradiction. Therefore, ba=1.

Remark. In fact, this theorem remains true for a group ring over a commutative ring R with

identity. ([2], Theorem 1)

Theorem 4. A solvable torsion group G is an F-group.

Proof. There exists a normal sequence $G = G_0 \supseteq G_1 \supseteq ... \supseteq G_n = \{1\}$, where G_i/G_{i+1} is ablelian for each *i*. Since *g* is a torsion group, G_i/G_{i+1} is an abelian torsion group, so it is locally finite for all *i*. Hence *G* is also locally finite. By Lemma 1 and Theorem 2, *G* is an \mathcal{F} -group.

Now we investigate our assertion for solvable groups. But in this direction, there are two short theorems:

Theorem 5. [2] Let G be a group, N a normal subgroup and assume (a) G/N is abelian, (b) N is finite. Then G is an \mathcal{F} -group,

Proof. It is sufficient to assume G/N finitely generated. Then $G/N\cong G_1/N\times ...\times G_k/N$, where each factor G_i/N is cyclic. If each G_i/N is finite cyclic, then G_i/N is an \mathcal{F} -group by Theorem 2, and hence so is G/N. For the case that G_i/N is infinite cyclic, let xN be a generator of N. Then $y\to x^{-1}yx$ is an automorphism of N. Since N is finite, N has a finite automorphism group, so x^m centralizes N for some m>0. Thus $N^*=(x^m,N)=(x^m)\times N$ is an \mathcal{F} -group and [G:N]=m. By Theorem 2, G is an \mathcal{F} -group.

Theorem 6. [2] Let G be a group, N a normal subgroup and assume (a) G/N is abelian, (b) N is finitely generated abelian. Then G is an \mathcal{F} -group.

From this, we obtain the following corollaries:

Let C(G) be the center of a group G.

Corollary. 1. If C(G) has a finite index in G, then G is an \mathcal{F} -group.

Proof. By Schur's lemma [4], the commutator subgroup G' is finite. And G/G' is abelian. So the result follows by Theorem 5.

A group in which each element has a finite number of congugates is called an FC-group.

Corollary 2. A finitely generated FC-group is an F-group.

Proof. Let $g_1, g_2, ..., g_n$ be generators of G. Then $[G:C(G)] < \infty$ for all i and consequently $[G:C(G)] = [G:_{i=1} \cap {}^nC(g_i)] < \infty$. Thus G is an \mathcal{F} -group by Corollary 1.

References

- 1. I. Kaplansky, Problems in the theory of rings, revisted, Amer. Math. Mon. 77 (5), 1970, 445-454.
- 2. G. Losey, Are one-sided inverses two-sided inverses in a matrix ring over a group ring, Canad. Math. Bull 13(4), 1970, 475-479.
- M.S. Montgomery, Left and right inverses in group algebras, Bull. Amer. Math. Soc. 75, 1969, 539-540.
- 4. S.K. Sehgal, Topics in group rings, Marcel Dekker, Inc., 1978.