On S-Ideals in BCK-Algebras

by Young Bae Jun and Sung Min Hong Gyeongsang National University, Jinju, Korea

I. Preliminaries

Lex X be a non-empty set with a binary operation * and suppose there is a constant 0 in X. Then (X, *, 0) (or simply denoted by X) is called a BCK-algebra if the following conditions hold:

- (1) $(x*y)*(x*z) \leq z*y$,
- (2) $x*(x*y) \leq y$,
- (3) $x \leq x$
- (4) 0 < x,
- (5) $x \le y$ and $y \le x$ imply x = y.

where $x \le y$ means x * y = 0.

Example 1. ((4)) Let X be the set of all natural numbers: 0, 1, 2, ... For two natural numbers x, y, we put

$$x * y = \begin{cases} 0, & \text{if } x \leq y, \\ x - y, & \text{if } y < x. \end{cases}$$

Then X is a BCK-algebra.

Example 2. ((4)) Let $X = \{0, 1, 2, ...\}$ with the natural order. Then we define

$$x*y = \begin{cases} 0, & \text{if } x \le y, \\ 1, & \text{if } y < x \text{ and } y \ne 0, \\ x, & \text{if } y < x \text{ and } y = 0. \end{cases}$$

Under the definition of *, X is a BCK-algebra.

Let X be a BCK-algebra and suppose that there is an element 1 in X such that $x \le 1$ for all $x \in X$. Then X is called a bounded BCK-algebra, and 1 is said to be a unit of X.

We shall state some properties on BCK-algebra:

- (1) $x \le y$ implies $z * y \le z * x$
- (2) x < y, y < z implies x < z
- (3) $(x*y)*z \le (z*x)*y$
- (4) (x*y)*z=(x*z)*y
- (5) (x*y) < z implies x*z < y
- (6) $(x*y)*(z*y) \leq x*z$
- (7) $x \le y$ implies $x * z \le y * z$
- (8) $x*y \leq x$
- (9) x * 0 = x

for all x, y, z in BCK-algebra X.

Theorem 1. ([2]) Let X = (X, *, 0) be a BCK-algebra without unit, and let $1 \notin X$, we define, for all $x \in X$.

$$x*1=0$$
 and $1*1=0$.

Next we define

$$1 * x = 1$$

for every $x \in X$.

Then the algebra X with 1 (denoted by X') is a BCK-algebra.

For BCK-algebras X and Y, a mapping $f: X \rightarrow Y$ is called a homomorphism if for any $x, y \in X$, f(x * y) = f(x) * f(y). If a homomorphism $f: X \rightarrow Y$ is onto, f is called an epimorphism. A non-empty subset A of a BCK-algebra X is called an ideal if the following conditions are satisfied:

- $(1) 0 \in A$
- (2) $x \in A$ and $y * x \in A$ imply $y \in A$.

Theorem 2. ((2)) Let $f: X \rightarrow Y$ be a homomorphism. Then the kernel of f, Ker(f), is an ideal of X.

II. S-Ideals in BCK-algebras

In the theorem 1, the algebra X is an ideal of the algebra X' obtained by adding 1. Then $x*1=0 \in X$ but $1*x=1 \notin X$. In general it does not hold in the ideal A of BCK-algebra that $x*y \in A$ imply $y*x \in A$. Hence we define a symmetric ideal (briefly S-ideal) in BCK-algebra.

Let A be a non-empty subset of BCK-algebra X. A is called to be a S-ideal if

- $(1) 0 \in A$
- (2) $x \in A$ and $x * y \in A$ imply $y \in A$.

By definition, the simplest examples of S-ideals are $\{0\}$ and X.

Theorem 3. Let $f: X \rightarrow Y$ be a homomorphism of BCK-algebras. Then the kernel of f, Ker (f), is a S-ideal of X.

Proof. Since f(0) = 0, $0 \in Ker(f)$, Let $x \in Ker(f)$, $x * y \in Ker(f)$, then $f(x) = 0 \in \{0\}$, $f(x) * f(y) = f(x * y) = 0 \in \{0\}$. Since $\{0\}$ is a S-ideal, $f(y) \in \{0\}$. Hence $y \in Ker(f)$. Therefore Ker(f) is a S-ideal of X.

Theorem 4. If x is element of S-ideal A and $x \le y$, then $y \in A$.

Proof. $x \le y$ imply $x * y = 0 \in A$. Since $x \in A$ and since A is a S-ideal, $y \in A$.

We set $A_t = \{x \in X | x \le t \text{ for fixed } t \in X\}$. A_t is not a S-ideal. For example, fix t = 5 in example 1, and the set A_5 is not a S-ideal.

Theorem 5. Let X be a BCK-algebra. Then any set A_t is a S-ideal if and only if $x \le z$ and $x * y \le z$ imply $y \le z$ for any $x, y, z \in X$.

Proof. (\Rightarrow) Suppose that any A_t is a S-ideal. Let $x \le z$ and $x * y \le z$. By the hypothesis, A_z is a S-ideal. Hence $x \in A_z$ and $x * y \in A_z$ imply $y \in A_z$. Therefore $y \le z$.

 \Leftarrow) Consider A_z for any $z \in X$. Obviously $0 \in A_z$.

Let $x \in A_z$ and $x * y \in A_z$. Then $x \le z$ and $x * y \le z$. By the hypothesis, $y \le z$ and hence $y \in A_z$.

Remark. In general, Any ideal is not always S-ideal. For example, in the theorem 1, the algebra X is an ideal of X', but X is not S-ideal of X'.

References

- 1. K. Iseki, Some Properties of BCK-algebras, Math. Seminar Notes 2(1974), Kobe Univ., 193-201.
- 2. K. Iseki, On Ideals in BCK-algebras, Math. Seminar Notes 3 (1975), Kobe Univ., 1-12.
- 3. K. Iseki, Remarks on BCK-algebras, Math. Seminar Notes 3 (1975), Kobe Univ., 45-53.
- 4. K. Iseki and S. Tanaka, Ideal Theory of BCK-algebras, Math. Japonica 21(1976), 351-366.