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1, Introduction

It is a well-known fact that if ¢ is an isotropic quadratic form, then ¢ is universal. Furthermore,
any quadratic form ¢ with dim ¢=5 over p-adic field Q, (#=3) is always isotropic (5; p.36). But,
in general, any universal quadratic form is not always isotropic. Note that every regular quadratic
form of dimensionz2 over a finite field is always universal.

In this paper, we shall prove that if ¢ is a universal regular quadratic form with dim ¢=3 or 5,

then it is isotropic.
2. Preliminaries

Throughout this paper, a field shall always mean a field of characteristic not equal to 2. A

quadratic form g over a field F, by definition, a homogeneous polynomial ¢ over F of degree 2:
g(X) =gq(zy, ..., Zn) = 2 0i,2:x;, a,EF,
Since we assume charFx2, we may symmetrize the coefficients to assume a;;=2;; for all i, j.

Let F~ denote the space of zn-tuples. Any quadratic form g gives rise to a map ¢ : F*—F., We shall
refer to g : F*—F as the gquadratic map defined by the quadratic form ¢. Since the quadratic map
determines uniquely the quadratic form ¢, we can regard the quadratic maps as the quadratic forms.

It ¢ and ¢’ are quadratic forms, we say that they are isometric (=~) if there exists a linear
automorphism g : F*—F* such that

¢ (gx) =g(z) for all z in F~,

Let g(z) = Y,a,ziz; be a quadratic form. We shall say that g is regular if the symmetric matrix

(a;;) is invertible. In this case, d(g) =det (a;;)F* (an element of F/F2) is called the determinant

of the regular quadratic form g,

Definition 2.1. Let ¢ be a quadratic form. Let ey, ..., e, form a basis of 7. we shall say that
ey, ..., e, forms an orthogonal basis for q if g(e;+e;) =q(e;) +qle;) for all i=j,

It is clear that any orthogonal linearly independent vectors of ¢ can be extended to an orthog-
onal basis of g, In other words, any quradatic form ¢ is isometric to some diagonal form, d,z,*+

Y A

Definition 2.2. Let ¢, : F*—F, and g, : F"—F be quadratic forms. We shall say that a quadratic
form ¢ is an orthogonal sum of g, and ¢, (g=g¢,1¢,) if q(zi+2z,) =q,(x)) +a2(z;) for all (z,, )
in F»xFm We shall say that a quadratic form ¢ is a tensor product of ¢; and ¢, (¢=¢,Rq.=
@192), if 9(z:Qxy) =g1(x1) gz (zy) for all 2,Rx, in FrQF™,
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In the sequel, we shall abbreviate dyz,2+...+d,z,2 by {4, ...,d,>. The special quadratic form
gl ...1q will be abbreviated as nq.

Definition 2.3. Let ¢ be a quadratic form over F, We say that a non-zero vector z in F~ is
isotropic if g(z) =0, and say that z is anisotropic if otherwise. The quadratic form is said be isotr-

opic if it contains a non-zero isotropic vector, and is said to be anisotropic if otherwise.

Theorem 2.1. Let g be a guadratic form with dim q=2. The following four statements are equi-
valent:

(1) q is regular and isotropic.

(2) d(g)=~1F2

(3) ¢=<1, ~D.

(4) q=~zy.

Proof. See (2; p.12) Q.E.D.

The 2-dimensional quadratic form satisfying the conditions in theorem 2,1 is called the hyperbolic
plane and will be denoted by H. An orthogonal sum of hyperbolic planes will be called a hyperbolic
space.

Corollary 2.2. If ¢ is any regular quadratic form, then qQH~(dim ¢q)H,

Proof. Inducting on dim q, we are reduced to the case when g~(ad, a+0. But then, (a)QH=
{a, —a)=~H by theorem 2,1, Q.E.D.

Definition 2.4. Let ¢ be a regluar quadratic form over a field F. D(g) = {asFla=q(z) for
some z in F"}, the set of elements in F represented by q. In particular, ¢ is called wuniversal if
D(g)=F.

Theorem 2.3. Let q be a regular quadratic form. Then

(1) q is isotropic iff g~H | f for some quadratic form f,

(2) If q is isotropic then it is universal.

Proof. See (2; p.13). Q.E.D.

Theorem 2.4. Let g be a quadratic form. For a=F, we have acD(q) iff ¢~~{a,ay,...,ayy for
suitable a,=F,

Proof. “If” is clear. Conversely, take a=¢q(x), u=F". If we complete u to an orthogonal basis
U, U, ..., U, of F*, then ¢=(q(u), ¢(uy),...,q<%s)>. Q.E.D.

Corollary 2.5. Let gq,={a,b), q,={c,d) be regular quadratic forms. Then q,~=q, iff d(g,) =d(qz)
and D(g,) N D(gz) #¢.

Proof. 1t is clear from theorem2.4. Q.E.D.

3. Results of Pfister forms
Let us first make formal definitions.

Definition 3.1. Let ¢ be a regular quadratic form over a field F. G(g) = {a=F|<adg~g}, the
group of similarity factors of g,

Definition 3.2, We shall say that a regular quadratic form g is a group form over F, if D(q)
is a subgroup of F.
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Since D(g) is stable under multiplication by F, in order that D(q) is a subgroup of F, it is
enough that D(g) is closed under multiplication.

In this section, we shall try to cover some of basic facts about Pfister forms. Let us recall that
an n-fold Pfister form over F means a quadratic form of the shape .-,Q" (,a, a;=F, and is
abbreviated by the notation:

{ay, ..., an).
Note the following two special cases when we set a,=1:
1, as, ..., a)==2{a, ..., 4.},
{—1,ay, ..., a,)~2""1H,

Main theorem for Pfister forms 3.1, Let g={ay, ..., 2,). Then: MT 1. D{q) =G{(q); in parti-
cular, q is a group form. MT 2. If q is isotropic, it must be hyperbolic.
We start with a lemma.

Lemma 3.2. (1) (a,8)~(a,by) if y=D{a).
(2) {(a, bYy=~(=, ab) if z=D<a,b).
Proof. (1) {a,b)==2(1,a) | <b)<1,a)
=(1,ay | (b)<y,ay> by corollary 2.5
~(a, by).
(@) {a, b)=~(1, ab) | {a, b}
~(1,ab)y | {z, abz) by corollary 2.5
~(z, aby. Q.E.D.
Since every n-fold Pfister form ¢ represents 1, we may write ¢~{1)> | ¢’ by theorem 2.4. Here ¢’
is uniquely determinded up to isometry by Witt’s cancellation theorem, and we shall call ¢’ the
pure subform of g.

Theorem 3.3. Let g={ay, ..., a,) and bF, Then b=D(q") iff ¢==(, bs, ..., bn) for suitable b;=F.
Proof. “If” is trivial, so we start with b&D(q’). We shall use induction on z (the “fold” of ¢).
If n=1, we have ¢'~{a,)=2{b), so the desired conclusion is trivial. In generzl, write
Sf={ay, ..., aqn i) L F,
so ¢~f{1,ap=f"1a)f
g=f14aDf (by cancellation of (1)).
From the hypothesis 6=D(g’), we can express & as 2'-+a,y where z’D(f) U [0} and yD(f) U {0}.
We can further express y=1%+y/, where t=F, and y'eD(f")U{0}. By the inductive hypothesis,
we may write fo{z’, ¢ ..., ) (unless z'=0) and f=(y’, ds,...,dn_1) (unless y'=0). We may
assume that y#0, for otherwise, /=5, so
g fla)==(z’, ¢35, -, Ca1) (@i
(b, €3y veey Cam1, An),
establishing the theorem. We claim that g=~{a,, ..., a,_;, ya,).
For this, we may assume that 3’#0, for otherwise, y=12, so
g={ay, ..., a.)
~{ay, ..., t2a,)
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~{ay, e, @ny, VALY,
establishing our claim. Under this assumption, we have
y=t2+y'eD{y).
Then
= fla)y=(y’, dz, .., dn-1, an)
~(y’, dy, <+, dn_1, @nYY by lemma (1)
=flay=(a, ..., @x-1, an),
establishing the claim. Finally, we may assume that z’#0 (for otherwise, a,y is already our 5).
Under this assumption, we have
9= flay)=(x’, ¢5, .., Cn1, @n3)
T’ A+ any, Cay eery Caoyy, T'¥8,Y. by lemma (2)
~b, ¢y, vvy Eay, T'yar). Q.E.D.

Now, we can prove the “Main theorem for Pfister forms”.

Proof of MT 2. If ¢ is isotropic, we can write

Q> g'~g~, =1 1... by theorem 2.3
and cancellation yields —1=D(g"). By theorem 3.3, we have
g=~(—1,..)~2"'H, Q.E.D.

Proof of MT 1. We need only show D(q)CG(g), since 1=D(q). If a=D(g), then
(—ade~g | (—adg=q | {(—a,..>
~(a,..y 1 (~a,..)

is isotropic, so must be hyperbolic by MT2. Hence
{—aYg=~2"H~{—1)q,

so cancellation of ¢ yields
{(—ayg=({—Dg,

so, tensoring by {(—1), we have g=~{adq. Q.E.D.

4. Applications

Theorem 4.1, If g~{a, b, c) represents ~abe=F, then q is isotropic. In particular, a 3-dimensional
regular quadratic form is universal iff it is isotropic.

Proof. Let f={a,b,c,abc). We claim that f is a 2-fold Pfister form. Since —abceD(g) = D{a,
b, c>, it follows that az?+by?+cz?= —abc for some z,y,2z in F, Hence f is isotropic. By comparing
detrminants and by theorem 2.4, we see that f~<1,d,e, de)d for some d,e in F, Thus fis a Pfister
form. By theorem 3.1,

f=<a,b,c, abcy~{a) =<1, ab, ac, bcy~2H~(1, —1, 1, —1>.
Hence {ab, ac, bc) is isotropic, so (ab, ac, bc) is a group form. Thus
q~<{abc){ab, ac, bc)=~{ab, ac, bc>
is isotropic. Q.E.D.
Lemma 4.2. Let f and g be anisotropic quadratic forms. If f| g is hyperbolic then dim f=dim g.
Proof. Let f~<a,,...,a,>. Suppose f | g~mH, If dim f=n<m, then
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MH:<a1, _a1>_l_---_l_<ana _an>_L(m—°n)H:<al, sety an>_Lgy
so, by Witt's cancellation theorem and theorem 2.3, g is isotropic, which is & contradiction. Hence
dim f=m, Similarly, dim g=m. Since dim f+dim g=2m, we have dim f=dim g. Q.E.D.

Corollary 4.3. Let f| g~mH, If dim f>m, then f is isotropic.
Proof. Let g~g,, | sH be the Witt’'s decomposition of g. If f is anisotropic, then dim f=
dim g,,<m by lemma 4.2. Hence if dim f>m, then f is isotropic. Q.E.D.

Theorem 4.4, If a 5-dimensional regular quadratic form q is universal then it is isotropic.
Proof. Suppose that ¢ is a regular quadratic form which is universal. Then g is a group form
with G(g) =F, and ¢~(1,4,b,¢c,d) by theorem 2.4, It follows that g~(abed)®q and hence
abcdF?=d(q) = d({abed)®q) = F2.
Therefore (abd>={cd)>. Thus we have the result:
g=~(1, a,b, ¢, dy~{a)Qq~{a, 1, ab, ac, ad)=={1, ab, ac, ad, a)
~(1,cd, ac, ad, a)=={(1, ac, ad, ¢d, ay={ac, ad) | {a).
Hence we may assume that g=~{a, b) 1 (), so gl {ac, bc, abcd>=~{a,b,c). Since ¢ is universal, it
follows that the 3-fold Pfister form {a, b, ¢)) is isotropic. From this, ¢ | <lac, &c, abc)=~4H by theorem
3.1. By corollary 4.3, ¢ is isotropic. Q.E.D.
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