Clusters and Smirnov Compactification of E₀-proximity Spaces

by Song Ho Han Kangweon National University, Chooncheon, Korea

I. Introduction

In this paper, we deal with the compactification problem of E_0 -proximity spaces. The concept of a cluster, the analogue in a proximity space of an ultrafilter, was introduced by Leader [8] and provides an alternative approach to many proximity problem. In praticular, Leader [8] obtained the compactification of a proximity space X to be the family of all clusters in X. Since the Smirnov compactification is unique, it is evident that a one-to-one correspondence exists between clusters and ends. In this note we try to obtain the Smirnov compactification of the E_0 -proximity space by using cluster.

II. Preliminaries

The theory of proximity spaces was essentially discovered in the early 1950's by Efremovič when he axiomatically characterized the proximity relation A is near B, which is denoted by $A\delta B$, for subsets A and B of any set X. Efremovič's axioms of proximity relation δ are as follows;

- B₁. $A\delta B$ implies $B\delta A$
- E2. $(A \cup B)\delta C$ if and only if $A\delta C$ or $B\delta C$
- E3. $A\delta B$ implies $A \neq \phi$. $B \neq \phi$.
- E4. $A \delta B$ implies there exists a subset E such that $A \delta E$ and $(X E) \delta B$.
- E5. $A \cap B \neq \phi$ implies $A \delta B$.

A binary relation δ satisfying axioms E1-E5 on the power set of X is called a (Efremovič) proximity on X. If δ also satisfies the following;

E6. $x\delta y$ implies x=y

then δ is called the separated proximity relation.

Definition 1. Let δ be a binary relation between a set X and its power set P(X) such that E_{01} . $x\delta\{y\}$ implies $y\delta\{x\}$.

 E_02 . $x\delta$ $(A \cup B)$ if and only if $x\delta A$ or $x\delta B$

E₀3. $x \delta \phi$ for all $x \in X$.

 E_04 . $x \in A$ implies $x\delta A$.

E₀5. For each subset $E \subset X$ there is a point $x \in X$ such that either $x \delta A$, $x \delta E$ or $x \delta B$, $x \delta (X - E)$, then we have $y \delta A$ and $y \delta B$ for some $y \in X$. The binary relation δ is called the E_0 -proximity on X iff δ saitsfies the axioms $E_0 1 - E_0 5$. The pair (X, δ) is called the E_0 -proximity spaces.

Theorem 1. In an E_0 -proximity spaces (X, δ) let δ_1 be a binary relation on P(X) defined as follows; $A\delta_1B$ if and only if there is a point $x \in X$ such that $x\delta A$, $x\delta B$, then δ_1 is Efremovič proximity.

Definition 2. If on a set X there is a topology ζ and a E_0 -proximity δ such that $\zeta = \zeta(\delta)$, then ζ and δ are said to be compatible.

Theorem 2. In an E_0 -proximity space (X, δ) , if A^{δ} is defined to be a set $\{x \mid x \delta A, x \in A\}$ for each subset A of X, then δ is a Kuratowski closure operator. We consider the relation ultrafilter and cluster in E_0 -proximity spaces. It is well known that a family $\mathcal L$ of subsets of a non-empty set X is an ultrafilter if and only if the following conditions are satisfied;

- (i) If A and B belong to \mathcal{L} , then $A \cap B \neq \phi$.
- (ii) If $A \cap C \neq \phi$ for every $C \in \mathcal{L}$, then $A \in \mathcal{L}$.
- (iii) If $(A \cup B) \in \mathcal{L}$, then $A \in \mathcal{L}$ or $B \in \mathcal{L}$.

Now we consider the family of sets in an E_0 -proximity space satisfying condition similar to (i), (ii), (iii), with nearness replacing non-empty intersection and we are led to the following definition;

Definition 3. A family σ of subsets of an E_0 -proximity space (X, δ) is called a cluster, iff the following conditions are satisfied;

- (1) If A and B belong to σ , then there is a point $x \in X$ such that $x \delta A$ and $x \delta B$.
- (2) If for every $C \subseteq \sigma$, there is a point $x \subseteq X$ such that $x \delta A$, $x \delta C$, then $A \subseteq \sigma$.
- (3) If $(A \cup B) \in \sigma$, then $A \in \sigma$ or $B \in \sigma$.

Lemma 1. For each x in the E_0 -proximity space (X, δ) , the family $\sigma_x = \{A \subset X | x \delta A\}$ is a cluster.

Lemma 2. If σ is any cluster in (X, δ) , then $A \subseteq \sigma$ if and only if $\bar{A} \subseteq \sigma$.

Lemma 3. If a cluster σ in an E_0 -proximity space (X,δ) is determined by an ultrafilter $\mathcal L$ then σ is a point cluster σ_x if and only if $\mathcal L$ converges to x. E_0 -proximity mapping $f:(X,\delta_1)\to (Y,\delta_2)$ can be defined similar to the Efremovic proximity mapping, that is, f is an E_0 -proximity mapping iff $x\delta_1A$ implies $f(x)\delta_2 f(A)$. It can be easily shown that E_0 proximity mapping is continuous.

Theorem 3. If f is an E_0 -proximity mapping $from(X, \delta_1)$ to (Y, δ_2) , then to each cluster σ_1 in X, there corresponds a cluster σ_2 in Y such that $\sigma_2 = \{B \subset Y | \text{ for each } A \in \sigma_1, \text{ there is a point } y \in Y \text{ with } y \delta_2 B, y \delta_2 f(A)\}$.

III. The main theorem

Using cluster, we shall now construct the Smirnov compactification of a separated E_0 -proximity space. Let (X, δ) be a separated E_0 -proximity space and let X denote the set of all clusters in X. For $A \subset X$, let $\bar{A} = \{\sigma \in X \mid A \in \sigma\}$. For $x \in X$, let $f(x) = \sigma_x$ (the point cluster). Then it is easy to see that (i) f is a one-to-one mapping, and (ii) $f(A) \subset \bar{A}$. It is to obtain property (i) that we insist on the E_0 -proximity δ being separated, for we are then assured that each point $x \in X$ is a member of one and only one cluster in X.

Definition 4. For $P \subset X$, we say that a subset A of X absorbs P iff $A \in \sigma$ for every $\sigma \in P$, that is, $P \subset \overline{A}$, denoted $A \mapsto P$.

Lemma 4. The binary relation δ^* on the power set of X defined by $P\delta^*X$ iff A absorbs P and

B absorbs \mathcal{Z} implies that there is a point $x \in X$ such that $x \delta A$, $x \delta B$, is a separated proximity on \mathcal{X} . **proof.** E1. is clear.

E2. Suppose that $(P \cup \mathcal{L}) \delta^* \mathcal{L}$ and that $P \delta^* \mathcal{L}$. Let $B \mapsto \mathcal{L}$ and $C \mapsto \mathcal{L}$, then we must show that there is some $x \in X$ with $x \delta B$, $x \delta C$. Since $P \delta^* \mathcal{L}$, there are sets A and D absorbing P and \mathcal{L} respectively such that for each point $x \in X$, $x \delta A$ or $x \delta D$. By definition $1 - (E_0 5)$ there is a subset $E \subset X$ such that for each point $x \in X$ neither $x \delta A$, $x \delta E$ nor $x \delta D$, $x \delta (X - E)$. Since $D \mapsto \mathcal{L}$ and $x \delta D$ or $x \delta (X - E)$ for each $x \in X$, (X - E) belongs to no cluster in \mathcal{L} . Consequently, (C - E) belongs to no cluster in \mathcal{L} . But $C = (C - E) \cup (C \cap E) \mapsto \mathcal{L}$ implies that $(C \cap E) \mapsto \mathcal{L}$. Now $(A \cup B) \mapsto (P \cup \mathcal{L})$ implies that there is some $x \in X$ with $x \delta (A \cup B)$, $x \delta (C \cap E)$. Since for each $y \in X$ $y \delta A$ or $y \delta E$, we also have for each $y \in X$ $y \delta A$ or $y \delta E$. Hence we have for some $x \in X$ $x \delta B$ and $x \delta C \cap E$, that is, $x \delta B$ and $x \delta C$. Conversely suppose that $\mathcal{L} \delta^* \mathcal{L}$, $D \mapsto (P \cup \mathcal{L})$ and $C \mapsto \mathcal{L}$. Then $D \mapsto \mathcal{L}$ and we have for some $x \in X$ $x \delta D$ and $x \delta C$. Thus $(P \cup \mathcal{L}) \delta^* \mathcal{L}$.

E3. That $P\delta^*\mathcal{L}$ implies P and \mathcal{L} are nonempty in clear.

E4. If $P\delta^*\mathcal{L}$, there are sets A and B absorbing P and \mathcal{L} respectively such that for each $x \in X$, $x \not \delta A$ or $x \not \delta B$. By definition $1-(E_05)$, there is a subset $E \subset X$ such that for each $x \in X$, $x \not \delta A$ or $x \not \delta E$ and $x \not \delta B$ and $x \not \delta (X - E)$. Since for each $x \in X$ $x \not \delta B$ or $x \not \delta (X - E)$, and $B \mapsto \mathcal{L}$, (X - E) belongs to no cluster in \mathcal{L} . Thus $E \mapsto \mathcal{L}$. Now let $\mathcal{L} = \bar{\epsilon}$. Then $P\delta^*\mathcal{L}$ because $A \mapsto P$, $E \mapsto \mathcal{L}$ and for each $x \in X$ $x \not \delta A$ or $x \not \delta E$. Since E belongs to no cluster in $(X - \mathcal{L})$. $(X - E) \mapsto (X - \mathcal{L})$. Therefore $(X - \mathcal{L})\delta^*\mathcal{L}$ since for each $x \in X$ $x \not \delta B$ or $x \not \delta (X - E)$.

E5. Suppose that $P \cap \mathcal{L} \neq \phi$ and $A \mapsto P$, $B \mapsto \mathcal{L}$. Then both A and B absorbs $P \cap \mathcal{L}$, so that there is some $x \in X$ with $x \delta A$ and $x \delta B$. Hence $P \delta^* \mathcal{L}$.

E6. $A \mapsto \{\sigma\}$ where $\sigma \in \mathcal{X}$ iff $A \in \sigma$. Hence $\sigma_1 \delta^* \sigma_2$ iff $\sigma_1 = \sigma_2$. Thus δ^* is separated. Now let ζ^* be the induced toplogy on \mathcal{X} by δ^* , then ζ^* is a completely reguar topology.

Theorem 4. (X, δ) is homeomorphic to f(X) with the subspace proximity induced by δ^* , and f(X) is dense in X.

proof. We first note that $\mapsto f(B)$ iff $B \subset A^{\delta}$. Hence for each $\sigma \in X$, $\sigma \delta^* f(A)$ iff $C \in \sigma$ and $B \mapsto F(A)$ imply that there is some $x \in X$ with $x \delta C$ and $x \delta B$, iff $C \in \sigma$ and $A \subset B^{\delta}$ imply that there is some $x \in X$ with $x \delta C$ and $x \delta B$ iff $A \in \sigma$. That is, \overline{A} is the ζ^* closure of f(A). Since X belongs to each cluster in X, f(X) is dense in X. No $\sigma_x \delta^* f(A)$ iff $A \in \sigma_x$ iff $x \delta A$. Thus X is homeomorphic to f(X).

Theorem 5. (\mathcal{X}, ζ^*) is compact.

proof. By lemma 3, it suffices to prove that each cluster ζ in X is a point cluster. Since f(X) is dense in X, lemma 2 implies that $f(X) \in \zeta$. From theorem 2, there is a unique cluster \mathcal{T}' in f(X) such that $\mathcal{T}' \subset \mathcal{T}$. But X is E_0 -proximally isomorphic to f(X), so that there is a cluster σ in X which corresponds to \mathcal{T}' . Now from the proof of theorem 4, we know that $\sigma \delta^* f(A)$ iff $A \in \sigma$. Applying the theorem 3, we obtain $\{\sigma\} \in \mathcal{T} \subset \mathcal{T}$ showing that \mathcal{T} is indeed a point cluster in X. Since X is a compact Hausdorff completely regular space, we know that $P\delta^*\mathcal{L}$ iff there is some $\sigma \in X$ with $\sigma \delta^* P$ and $\sigma \delta^* \mathcal{L}$. Hence the restriction of δ^* to $X \times P(X)$ is the E_0 -proximity on X. From this combining the above sequence of the theorem we obtain the main result of this paper.

Theorem 6. Every separated E_0 -proximity space is a dense subspace of a compact separated E_0 -proximity space. Since X has a unique compatible separated proximity, subsets A and B of X are near iff their closures in X intersect (X is called the Smirnov compactification of X).

References

- 1. Bourbaki, N.: General Topology, Paris: Herman. (1940).
- 2. Dugundji, J: Topology, Boston: Allyn and Bacon, Inc. (1965).
- 3. Efremovič, V.A.: The geometry of proximity I, Mat. Sb. 31 (73), 189-200, (1952).
- 4. Efremovič, V.A.: Infinitesimal space, Dokl. Akad. Nauk SSSR, 76, 341-343. (1951).
- 5. Han, S.H.: Products and quotients of E₀-provimity spaces, Res. Bull. Kangweon Univ. Korea. Vol. 17. (1982).
- 6. Kelly, J.L.: General topology, Princeton: Van Nostrand. (1955).
- 7. Kim, C.Y.: On the K-proximity, Kyungpook Mathematical Journal, Vol. 13. (1973).
- 8. Leader, S: On clusters in proximity spaces, Fundam. Math. 47, 205-213; MR 22# 2978.
- 9. Naimpally, S.A., and B.D. Warrack: Proximity spaces, Cambridge University Press. (1970).
- 10. Smirnov, Y.M.: On the proximity spaces, Math.Sb. 31. (1973).