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1. Introduction

One of the more important subclasses of general Z? Kernels that have atiracted considerable att-
ention in past years is the set of nuclear or trace-class kernels, which give rise to the so-called
trace-class operator (see, 1).

However, a thorough understanding of the properties of these kernels appears to be basic to the
study of nuclear spaces and measures. In the first stage, some results of these efforts may refer to
the reference 2,

The fundamental theorem of Minlos says that when H is a nuclear space, a finitely additive
cylinder measure on H* (the dual of A) can be extended to a os-additive measure on the o-algebra
generated by the cylinder sets.

However it is a well-known result that one can not generally extend a cylinder measure to a o-
additive one in a Hilbert space (see, 3). Therefore, in this note we consider this problem on the
o-Hibert space (Fréchet space) in a similar way toc Umemura’s method (see, 3).

To process our discussions, this note falls into the following main two steps; the first step is to
summarize the properties of nuclear space, together with Hopf’s extension theorem, and in the second
step, the relation between the extension measure and nuclear space is pointed out. In the process
of developing our discussions, the detailed proofs of the lemma in section II, are omitted so that

we should like to refer to the references of this note.

I1. Preliminary definitions and lemmas
Let H; and H, be two Hilbrt spaces, T a completely continuous linear operator from H, to H,.
Let T* denote the adjoint of T. Then T*T is a completely continuous self-adjoint linear operator
from H; to H,. Moreover, for any geH;, (T*Tp,¢)=(T¢, Tp)>0, that is, T*T is a positive
operator. According to the spectral resolution theorem for completely continuous self-adjoint operator,
there is an orthonormal system of eigenvectors {e,} of T*T, with corresponding eigenvalues

2,2>0, such that, for any geH;,

T*Te =§ln2 (¢, en)n. (1)
Let g,=(1/4,) Te,, then
(gm’ gn) (Ten; Tem) = (T*Tem em) =5nm:

where 6, is the kronecker delta, that is, {g,} is an orthonormal system in H, Now, for any

27



28 Myeong Hwan Kim

peH,, there is a vector u| {e,} such that
p=2(p, ex)entp,
since gl {e,}, p| T*Tp, thatis, (Tu, Tp)=0. Hence

T‘P =2 (¢’ e.) Te, or, T§0= ilzn (¢r €n)8n @
where 2,>0 and lim 2,=0, "

N—oo

If, in (1), we have f1,2<w, then the operator T is said to be of Hilbert-Schmidt type (written

n=1
briefly as H—S type); if il,,(oo, then T is said to be a nuclear operator. Obviously, every nucl-
n=1

ear operator is of H—S type, but an operator of H—S§ type is not necessarily nuclear. Any cont-
inuous linear operator of finite rank is, of course, nuclear. The product of two H—S type operators
is a nuclear operator. (see, 4).

Let H be a countable Hilbert space, with the sequence of inner product {(.,.),}. Let H, be the
completion of H with respect to (.,.),, and, for m>#n, let T,» be the imbedding operator from
H, to H, Suppose that, for every n, there is an m>n such that T,” is a nuclear operator.

Then H is called a nuclear space. Since the product of two H—S type operators is a nuclear
operator, it is easily seen that a countable Hilbert space H is a nuclear space if and only if, for
every n, there is an m>#n such that T, : H,—H, is of H—S type.

The basic properties of nuclear space are to derive in a many different ways, that is, by direct
derivation from the definition or, by its stability properties (see, 5). But from now on, we apply
only the following equivalent properties of them,

(H is nuclear) &) (for every m, there is an m>#n such that the imbedding operator T,": H,—H,
is of H—S§ type)(for every n, there is an m>#n such that the imbedding operator T,**: H*—H,*
is of H—S type).

Suppose that there is a sequence of subsets of a Hilbert space with the following properties;

(i) for each neN, H,DH,D...OH,D... and H=,,N"H,,

(i) HCH, and H dense in H,, (i) ¢=H, {oli<I@l:< .. <@lnonn.

We call H a o-Hilbert space (Fréchet space- written briefly as F-space) if we introduced n-topology
(or projective topology) induced by a countable norm system {[+|,} to H. If H,* is the dual of
H,, then H, is isomorphic to H,* by Riesz’s theorem (see, 3), so H,* is considered as H*=(J H,*,

We now consider the following lemmas (see, 3,5,6) prior to our discussion on how a cylinder

measure on 7 (that is an algebra but need not be a s-algebra) can be extended to a o-algebra.

Lemma 1. (Hopf’s extention theorem) Let o family of subsets T (need not be a g-algebra) and
let yt be a finitely additive measure. Then i can be extended to the smallest of a countably additive

measure defined on a o-algebra B that contains T iff,
p*(4) =inf | Sp(4)1AC 4, AT | ®

The measure is regular iff for every open set u,
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p(u) =sup{p(k) |kCu;k is compact}. @
This is equivalent to; for every Borel or measurable set A,
p(A) =inf{u(A) |ACu, u; open} @’

In this case, for u(4)<oo, we have p(A) =sup{p(k)|k:compact, kCA}. If pis not regular we can
obtain a regularization by defining
v(4) =inf {¢(«) | ACwu;u:open) 5)

Lemma 2. Let H be an F-space and 1 a regular cylinder measure on a algebra T (a family of
cylinder subsets) in H* Then p can be extended on the smallest of c-algebra B that contain T iff,
Sfor given any >0, there is a neighborhood of an origin, N in H such that

N°NA=¢, (AeT)>u(A) <, ®)
where Ne={TeH*:|T(f)|<1, YfeN].
Now, let T, : H—H, be the imbedding operator (an identity operator) and v a Gaussian measure
(see, 3,6) on H,*, Then we define the measure § on H* as
v(A) =v{T*(A)|AsT, T,*:H*>H* T,* is the dual of T}, N
where v is a Gaussian measure in terms of an inner product (.,.), of H,.
We say that cylinder measure p is continuous iff, for any >0 there is a neighborhood of N such
that (see, 6)

NeNAs=¢, &;={TIT(HZ1} 2 pldp<e. ®
This is equivalent to; for any e>0
f—0 (in H) :>£1_I§1 p(T| |T(f)|>e) =0. ®)

Accordingly, from (7),
s({TeH*||T (f)|>a})=v({T,.eH*||(T,, T)| >a}]

= L I—a\"f".e‘“\z”"dx+ I”‘ - IN\DE gy ]
oNfifils

ey

= \/ —ZJN e~ UNDEgr 40 (Ifl»—0, = is fixed and f is a variable)
PN TN

Therefore we have the following lemma;

Lemma 3. A Gaussian measure is a continuous and regular cylinder measure but it does not follow
a countable additivity in general.

Let T:H,—H, be a linear operator and g, a cylinder measure on H,*=H,. Now we define the
cylinder measure g, as

i (A) = {T* (A | AT} 9

if p, satisfy the condition (8). The result is that we following lemma from (1), lemma 1 and 2;
Lemma 4. If T is a H—S type, then p, satisfy the lemma 1.
II1. Main resuit
Suppose now that H=nri H, is not a nuclear space. As the definition in section ], for any

chosen #, there is an m>#n such that imbeding H,*—H,* is not H—S type. Let ¢ be a Gaussian
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measure on H* and p, a Gaussian measure on H,* with inner product (.,.),. Then for a cylinder
set A in H*, we have

p(A) =p.(H*NA).
So we may consider ¢ to be extended to a countable additive measure. However, set ¢=T*p,, let
P be a projective operator from H, into a finite dimensional subspace of H; generated by {¢y, ¢s, ...,
¢n}. Then we have PT*p,=T*p,, As TPT* is a finite dimensional symmetric operator, there

are eigenvalues 2, (¢=1,2,...,n) and eigenvectors e,=H, such that
her="TPT %, 2;:||T*80k"x2_<_é/1k<+°°.
On the other hand, for g=H,* |PT*J||>>r® is equivalent to ;lkl(gb, €s)2|2>r? because of an
assumption that T is not H—S type. Now let,
A= {p1% 2»—2\/>’":z,,s>"':z,,| @ e)al?< T zk+z\/>§zk} :
== k=1 k=1 k=1 &=1
If g=A, then
{ Bal @ el -2 | Y4501,
k=1 k=1 k=1
and hence, by characteristic function X(¢) =0 (¢ A4) or 1 (p=4), we have
m m 2 m
1~ { Sl @ esl2— S | /450 <X@).

And let g, be a Gaussian measure on H, Then

() = Sk ($) s (9)
21 A e { Tl @ sl = Sk [ du@)

m m m 2
=1- (4?;]11&)" (2m)~™N\2fpm { k)'; Ayt :L;j{l,, } eI 2 A g d  dx

m m
=1-2 A/2 5 A
r=1 k=1

Therefore
(A 21T 25> 1
Also, if ¢ge=A, then

IT*I2 NPT 0= T @, 0,12

._>- ﬁ lk_z\/i 2;, 2’2.

k=1 k=1

Now we set e,=Tg, g;=H,, a=£} A, and
k=1
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A= lpeHi*la—2 VT < 51 bl (9,801 [*Sa+2 /@)

“hen for arbitrary an r-neighborhood of the origin, N,™,
(A= N 25 (T (A= N,9)) = pa (A 2

vith T*1(A)) =A and A, being a cylinder set in H*,
Ve arrive at the conclusion that g can not be extended to a countable additive measure. This
mplies immediately that g, must be a Gaussian measure and T must be H—S type.
onversely, for m>n, imbedding: H, *—H, *,

Suppose that choosing N, as a unit sphere of H,, then from the lemma 4 we can find the sm-
ller &’ than a given &>0 such that

rN,"NA=¢ implies p(A)<¢'.

Che result is that it satisfies the extension condition (Lemma 1) if it is regular and continuous.

o we have the following result;
(Result) Let H be a o-Hilbert space and yp a Gaussian measure. Then y satisfies the Hopf's

:xtension theorem iff H is a nuclear space.
Abstract

In this paper we summarize the characteristic properties of the nuclear space, and then try to

:stablish the relation between Hopf’s extension theorem and nuclear space on o-Hilbert space.
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