On Some Properties of $L^p(\mu)$ Space

by Kyu Youl Lee Kangweon National University, Chooncheon, Korea

1. Preliminary

Throughout this note, X will denote a nonempty set, A a σ -algebra of subsets of X, and μ a positive measure on the measurable space (X, A). We derive characterizations of the measurable space (X, A, μ) such that $0 implies either <math>L^p(\mu) \subset L^q(\mu)$ or $L^q(\mu) \subset L^p(\mu)$.

Definition 1. A set E is said to be of finite measure if $E \in A$ and $\mu(E) < \infty$.

Definition 2. A set E is said to be of σ -finite measure if E is the union of a countable collection of measurable sets of finite measure.

Definitions 3. A μ -measurable set $E \subset X$ such that $0 < \mu(E) \le +\infty$ is called an atom whenever for any μ -measurable subset E_1 of E we have either $\mu(E_1) = \mu(E)$ or $\mu(E_1) = 0$.

2. Theorems

Theorem 1. If every set of finite measure in X is a finite pairwise disjoint union of atoms, and the measures of the atoms in X are bounded away from zero, then $L^p(\mu) \subset L^q(\mu)$ for all positive real numbers p and q such that p < q.

Proof. Assume $f: X \to R$ is a function such that $a = \int_X |f|^p du < +\infty$. For every $n \in \mathbb{N}$, we set $E_n = \{x \in X: |f(x)| > n\}$. Now

$$n^{\mathfrak{p}}\mu(E_n) < \int_{E_n} |f|^{\mathfrak{p}} d\mu < \int_X |f|^{\mathfrak{p}} d\mu = a < +\infty$$

so $\mu(E_n) < +\infty$ for every $n \in \mathbb{N}$, and $\mu(E_n) \to 0$ as $n \to \infty$. The hypothesis implies that there exists an $n_0 \in \mathbb{N}$ such that $\mu(E_n) = 0$ for $n \ge n_0$. This proves that $|f(x)| \le n_0$ for all $x \in X$ except a set of μ -measure zero. Hence,

$$\int_{X} |f|^{q} d\mu = \int_{X} |f|^{p} |f|^{q-p} d\mu \le n_{0}^{q-p} \int_{X} |f|^{p} d\mu < +\infty.$$

This completes the proof.

Theorem 2. If $X=E_1 \cup E_2$, where $E_1 \subset X$ is a measurable set such that $\mu(E_1) < +\infty$ and E_2 is either empty or an atom of finite mesure, then $L^q(\mu) \subset L^p(\mu)$ for all positive numbers p and q such that p < q.

Proof. Assume $f: X \to R$ is a messurable function such that $\int_X |f|^q d\mu < +\infty$. If we set $A_n = \left\{ x \in E_2 : |f(x)| > \frac{1}{n} \right\}$, we have either $\mu(A_n) = 0$ or $\mu(A_n) = +\infty$. Since

$$\frac{1}{n^q}\mu(A_n) \leq \int_{A_n} |f|^q d\mu \leq \int_X |f|^q d\mu < +\infty,$$

it follows that $\mu(A_n)=0$ for every $n\in \mathbb{N}$. Let A be the set $\bigcup_{n=1}^{\infty}A_n=\{x\in E_2:f(x)\neq 0\}$. We have

 $\mu(A)=0$ and $\int_X |f|^q d\mu = \int_{E_1} |f|^q d\mu < +\infty$.

Since $\mu(E_1) < +\infty$, Hölder's inequality implies that

$$\int_{X} |f|^{p} d\mu = \int_{E_{1}} |f|^{p} d\mu \leq (\int_{E_{1}} (|f|^{p})^{p/q} d\mu)^{p/q} (\int_{E_{1}} 1 d\mu)^{1-p/q} \\
= \mu(E_{1})^{1-p/q} (\int_{E_{1}} |f|^{q} d\mu)^{p/q} < +\infty.$$

This completes the proof.

Theorem 3. If $f_1, f_2, ...$ form a Cauchy sequence in $L^p(\mu)$ for $1 \le p < \infty$, that is, $||f_n - f_m|| \to 0$ as $n, m \to \infty$, there is an $f \in L^p$ such that $||f_n - f||_p \to 0$.

Proof. Let n_1 be an integer such that $||f_n - f_m||_p < 1/4$ for $n, m \ge n_1$, and let $g_1 = f_{n_1}$. In general, having chosen $g_1, ..., g_k$ and $n_1, ..., n_k$, let $n_{k+1} > n_k$ be such that $||f_n - f_m||_p < (1/4)^{k+1}$ for $n, m \ge n_{k+1}$, and let $g_{k+1} = f_{n_{k+1}}$, by lemma ((1), p.85), g_k converges a.e. to limit function f. Given $\varepsilon > 0$, choose N such that $(||f_n - f_m||_p)^p < \varepsilon$ for $n, m \ge N$. Fix $n \ge N$, and let $m \to \infty$ through values in the subsequence, that is, let $m = n_1$, $k \to \infty$. Then,

$$\varepsilon \ge \lim_{k \to \infty} \inf (\|f_n - f_{n_k}\|_p)^p = \lim_{k \to \infty} \inf \int_X |f - f_{n_k}|^p d\mu$$

$$\ge \int_X \lim_{k \to \infty} \inf |f_n - g_k|^p d\mu \qquad \text{(by Fatou's lemma)}$$

$$= (\|f_n - f\|_p)^p.$$

Thus $||f_n-f||_p\to 0$. Since $f=f-f_n+f_n$, we have $f\in L^p(\mu)$.

Theorem 4. If $g_1, g_2, ... \in L^p(\mu)$ (p>0) and $||g_k - g_{k+1}||_p < (1/4)^k$, k=1, 2, ..., then $\{g_k\}$ converges a.e. **Proof.** Let $A_k = \{x: |g_k(x) - g_{k+1}(x)| \ge 2^{-k}\}$. Then by Chebyshev's inequality,

$$\mu(A_k) \leq 2^{kp} (\|g_k - g_{k+1}\|_p)^p \leq 2^{-kp}, \ \mu(\lim_n \sup A_n) = 0.$$

But if $x \notin \lim_n \sup A_n$, then $|g_k(x) - g_{k+1}(x)| < 2^{-k}$ for large k, so $\{g_k(x)\}$ is a Cauchy sequence of complex numbers, and there converges.

Abstract

This note treats the inclusive relation of $L^p(\mu)$ for $0 and the convergence of sequences in <math>L^p(\mu)$.

References

- 1. Ash, Robert. B.; Measure, Integration and Funcional Analysis, Academic press, p. 80-92 (1972).
- 2. Randolph, John F.; Basic Real and Abstract Analysis, Academic press, p. 303-336 (1968).
- 3. Romero, Juan. L.; When is $L^p(\mu)$ contained in $L^q(\mu)$? American Mathematical Monthly, p. 203-205 (1983).
- 4. Royden, H.L.; Real Analysis, Macmillan, p. 243-250 (1968).