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A Property of Restricted Lie Algebra
by Byung-mun Choi

1. Introduction

A Lie algebra FL is called a free Lie algebra on X={z,,...,z,} if, given any mapping ¢ of X
into a Lie algebra M, there exists a unique homomorphism ¢ : FL—M extending ¢,

This algebra FL is constructed by the Lie algebra F(L) generated by X,

Here F(L) is the free algebra generated by X with the bracket operation [¢,b)=ab—ba for each
a beF(L).

The Friedrichs' theorem is a useful criterion for Lie elements in study of the free Lie algebra
over a field of characteristic 0.

This paper will introduce an analogue of criterion in case of characteristic p=0.

2. Preliminaries

Lemma 1 (Friedrichs). Let F=k(z,,....,x,) be the free algebra generated by the x; over a field of
characteristic 0.

Let & be the diagonal mapping of F, i.e., the homomorphism of F into F®F such that z6=
z:Q1 + 1Qz..

Then a=F is a Lie elements, i.e., a=FL if and only if ad=a®1+1Ra.

Definition. A restricted Lie algebra L of characteristic p20 is a Lie algebra with the operation

a—a'? (asL) satisfying the following three condition.
R1) vack, vacsL, (aa) P =a’a?,
R2) (a+b)W=a +b +7_1578:(a, )
where i8;(a, b) is the coefficient of ! in a(ad(a-+8))?"! (A an indeterminant).

R3) (a,b»)=a(adb)?,

Lemma 2. Let FL be the free Lie algebra generated by a set X={zy,...,%.}. If we define a'#'=a?
for every a=FL, then FL is a resticted Lie algebra.
proof. R1), R2) are casily verified with some rigorous but elementary calculation.

In FL, (a,b%)=ab*~b’a and
a(adbyr—abt- bra-+8 1T (— (8 piabr,

The last term of the right in second equation is 0.
Thus R3) is also hold,
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3. Main Theorem

Theorem. Let F=k(xy,...,x,) be the free algebra over a field k of characteristic p+0. Let & be
as in Lemma 1. _

Then a=F is in the restricted Lie algebra generated by the z; if and only if ad=a®1+1Ra.

Proof. (a®1+1R4a, dR1+1RQb)=[abIR1+1R(ad] implies that the set elements a satisfying
ad=a®1+1Ra is a subalgebra of F(L).

This includes the z;, hence it contains FL.

Let y,,¥5,... be a basis for FL. Since F is the universal enveloping algebra of FL, the elements
¥ihy%. Yt~ k;=0 form a basis for F. Hence the products

(rtyata - ymt =) Q (I 92 3a')
form a basis for FQF.
1Bzt ymt=) 6= (11 Q1+ 1Qy) " (521 + 1&Q)y2) *2... (Y@L + 1&Ym) *=
=yt yut QL+ Ryt Ty R
+hoyhy Tl Ry A Ry b YT Ry A ()
where (*) is a linear combination of base elements of the form
Yy Y03y ek withTl > 1.

In order that a shall be a linear combination of the base elements of the form y*...y,*®]1 and
1&y71...95%, it is necessary that in the expression for a in terms of the only base elements y,*...y,4
with one k=] and all the other ;=0 or np.

This means that a is a linear combination of the y; and ;.

But y;»*=(y;#)" FL. Hence ad=a®1+1a if and only if a=FL as a restricted Lie algebra.
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