A Property of Restricted Lie Algebra

by Byung-mun Choi

1. Introduction

A Lie algebra FL is called a free Lie algebra on $X = \{x_1, ..., x_n\}$ if, given any mapping ϕ of X into a Lie algebra M, there exists a unique homomorphism $\psi : FL \to M$ extending ϕ .

This algebra FL is constructed by the Lie algebra F(L) generated by X.

Here F(L) is the free algebra generated by X with the bracket operation [a,b]=ab-ba for each $a,b\in F(L)$.

The Friedrichs' theorem is a useful criterion for Lie elements in study of the free Lie algebra over a field of characteristic 0.

This paper will introduce an analogue of criterion in case of characteristic $p \neq 0$.

2. Preliminaries

Lemma 1 (Friedrichs). Let $F = k(x_1,...,x_n)$ be the free algebra generated by the x_i over a field of characteristic 0.

Let δ be the diagonal mapping of F, i.e., the homomorphism of F into $F \otimes F$ such that $x_i \delta = x_i \otimes 1 + 1 \otimes x_i$.

Then $a \in F$ is a Lie elements, i.e., $a \in FL$ if and only if $a\delta = a \otimes 1 + 1 \otimes a$.

Definition. A restricted Lie algebra L of characteristic $p \neq 0$ is a Lie algebra with the operation $a \rightarrow a^{(p)}$ ($a \in L$) satisfying the following three condition.

R1)
$$V\alpha \in k$$
, $Va \in L$, $(\alpha a)^{(p)} = \alpha^p a^{(p)}$.

R2)
$$(a+b)^{(p)} = a^{(p)} + b^{(p)} + \sum_{i=1}^{p-1} \sum_{i=1}^{n} S_i(a,b)$$

where $iS_i(a,b)$ is the coefficient of λ^{i-1} in $a(\operatorname{ad}(\lambda a+b))^{p-1}$ (λ an indeterminant).

R3)
$$[a, b^{(p)}] = a(adb)^p$$
.

Lemma 2. Let FL be the free Lie algebra generated by a set $X = \{x_1, ..., x_n\}$. If we define $a^{(p)} = a^p$ for every $a \in FL$, then FL is a resticted Lie algebra.

proof. R1), R2) are easily verified with some rigorous but elementary calculation.

In FL,
$$(a,b^{(p)})=ab^p-b^pa$$
 and

$$a(adb)^{p} - ab^{p} \cdot b^{p}a + \frac{p+1}{i-1}\sum_{i=1}^{p}(-1)^{i}\binom{p}{i}b^{i}ab^{p-i},$$

The last term of the right in second equation is 0.

Thus R3) is also hold,

3. Main Theorem

Theorem. Let $F=k(x_1,...,x_n)$ be the free algebra over a field k of characteristic $p\neq 0$. Let δ be as in Lemma 1.

Then $a \in F$ is in the restricted Lie algebra generated by the x_i if and only if $a\delta = a \otimes 1 + 1 \otimes a$.

Proof. $(a \otimes 1 + 1 \otimes a, b \otimes 1 + 1 \otimes b) = (ab) \otimes 1 + 1 \otimes (ab)$ implies that the set elements a satisfying $a\delta = a \otimes 1 + 1 \otimes a$ is a subalgebra of F(L).

This includes the x_i , hence it contains FL.

Let $y_1, y_2,...$ be a basis for FL. Since F is the universal enveloping algebra of FL, the elements $y_1^{k_1}y_2^{k_2}...y_m^{k_n}$, $k_i \ge 0$ form a basis for F. Hence the products

$$(y_1^{k_1}y_2^{k_2}\cdots y_m^{k_n})\otimes (y_1^{l_1}y_2^{l_2}\cdots y_n^{l_n})$$

form a basis for $F \otimes F$.

$$(y_1^{k_1}y_2^{k_2}\cdots y_m^{k_m})\delta = (y_1 \otimes 1 + 1 \otimes y_1)^{k_1}(y_2 \otimes 1 + 1 \otimes y_2)^{k_2}\dots(y_m \otimes 1 + 1 \otimes y_m)^{k_m}$$

$$= y_1^{k_1}y_2^{k_2}\dots y_m^{k_m} \otimes 1 + k_1y_1^{k_1-1}y_2^{k_2}\dots y_m^{k_m} \otimes y_1$$

$$+ k_2y_1^{k_1}y_2^{k_2-1}\dots y_m^{k_m} \otimes y_2 + \dots + k_my_1^{k_1}\dots y_m^{k_m-1} \otimes y_m + (*)$$

where (*) is a linear combination of base elements of the form

$$y_1^{j_1}y_2^{j_2}...y_s^{j_s}0y_1^{l_s}y_2^{l_2}...y_l^{l_l}$$
 with $\sum l_i > 1$.

In order that a shall be a linear combination of the base elements of the form $y_1^{k_1}...y_m^{k_m} \otimes 1$ and $1 \otimes y_1^{j_1}...y_s^{j_s}$, it is necessary that in the expression for a in terms of the only base elements $y_1^{k_1}...y_m^{k_m}$ with one $k_i=1$ and all the other $k_i=0$ or np.

This means that a is a linear combination of the y_i and y_i^{np} .

But $y_i^{np} = (y_i^p)^n$ FL. Hence $a\delta = a \otimes 1 + 1 \otimes a$ if and only if $a \in FL$ as a restricted Lie algebra.

References

- 1. C. Chevally, Fundamental concept of algebra, Academic Press Inc., New York, 1956.
- 2. J.E. Humphreys, Intro. to Lie algebra and representation theory, Springer Verlag, New York, 1972.
- 3. N. Jacobson, Lie algebra, Interscience, New York, 1962.
- 4. V.S. Varadarajan, Lie groups, Lie algebras and their representations, Prentice-Hall, New Jersey, 1974.