Mechanism on the Hydrolysis of Cinnamonitrile in Strong Acid

强酸性 溶液中에서 Cinnamonitrile의 加水分解 反應메카니즘

  • Ki-Sung Kwon (Department of Chemistry, Chungnam National University) ;
  • Nack-Do Sung (Department of Agricultural Chemistry, Chungnam National University) ;
  • Tae-Rin Kim (Department of Chemistry, Korea University) ;
  • Jeon, Yong Gu (Daejon Machine Development)
  • 권기성 (忠南大學校 理科大學 化學科) ;
  • 성낙도 (忠南大學校 農科大學 農化學科) ;
  • 김태린 (高麗大學校 理科大學 化學科) ;
  • 전용구 (大田機械廠)
  • Published : 1984.12.20

Abstract

Rate constants for the hydrolysis of cinnamonitrile in the concentration range of 1 ∼ 5M of perchloric acid at 25$^{\circ}$C have been determined by UV spectrophotometry and from the Bunnett equations, hydration parameters (${\omega}$ = 9.8, ${\omega}^*$ = 0.42 & ${\phi}$=1.6) were obtained. CNDO/2 MO calculations were performed to determine relative stability, net charges, and overlap population of various conformational isomers. The results show that the (E)-planar is more stable than the (Z)-planar and protonation is favored on the nitrogen atom. On the basis of above findings, the acid hydrolysis is initiated by the protonation of the nitrogen atom of cinnamonitrile and then water molecule acting as nucleophile and as a proton transfer agent in the rate determining step. In the transition state of the acid hydrolysis, nucleophilic addition of water molecule occurs by sigma approach to the positively charged $C_7({\alpha}$) atom of the conjugate acid. As the results, we may conclude that the hydrolysis of cinnamonitrile in the strong acidic media proceeds through the A-2 type mechanism.

Cinnamonitrile의 산-가수분해 반응속도상수를 25$^{\circ}$C, HClO$_4$ 1 ~ 5M의 센산성 용액속에서 UV분광법으로 측정하고 Bunnett관계식에 적용하여 ${\omega}$ = 9.8, ${\omega}^*$ = 0.42 및 ${\phi}$=1.6등의 hydration parameter를 구하였다. 이는 질소원자에 양성자화가 이루어진 짝산에 대하여 속도결정단계에서 친핵체로 물분자가 첨가된 다음에 양성자 전달체로 작용한다는 것을 시사한다. Cinnamonitrile 분자의 궤도함수를 CNDO/2방법으로 계산한 바, 형태이성체의 안정도는 (E)-planar>(Z)-planar이였으며 음하전의 크기는 $C_8({\beta}){\ll}N$이였고 전이상태에서 물분자는 짝산의 양하전이 큰 $C_7({\alpha}$)원자에 대하여 ${\sigma}$접근함을 알았다. 이상의 결과로 부터, 센산성속에서 cinnamonitrile의 가수분해반응은 특정 산-촉매작용을 수반하는 A-2형의 산-가수분해 반응메카니즘에 의하여 진행됨을 알았다.

Keywords

References

  1. Named Organic Reaction R. C. Denny
  2. Advanved Organic Chemistry J. March
  3. J. Amer. Chem. Soc. v.98 Jee-young H. Chu;B. S. R. Muty;Leo Fedor
  4. J. Amer. Chem. Soc. v.94 Steven D. Brynes;Leo R. Fedor
  5. J. Amer. Chem. Soc. v.91 Leo R. Fedor;John McLanghlin
  6. J. Amer. Chem. Soc. v.90 T. H. Fife;L. K. Jao
  7. J. Org. Chem. v.44 S. D. Brynes;L. R. Fedor
  8. J. Amer. Chem. Soc. v.83 J. F. Bunnett
  9. In troduction to physical Organic Chemistry R. D. Gilliomo
  10. Mechanism and Theory in Organic Chemistry T. H. Lowry;K. S. Richardson
  11. J. Org. Chem. v.29 J. Klein;A. Y. Meyer
  12. Spot Test in Organic Analysis Fritz Feigl
  13. Mloecular Orbital Theory for Organic Chemistry A. Streitwieser Jr.
  14. Structural Theory of Organic Chemistry, Topic in current chemistry N. P. Epiotis(et al.)
  15. J. Chem. Phys v.51 R. L. Hidebrandt
  16. Tetrahedron v.33 H. M. Niemeyer
  17. Approximate Molcular Orbital Theory J. A. Pople;P. L. Beveridge
  18. J. Natural Science. v.1 Sung Nack-Do;Kwon Ki-Sung
  19. J. Amer. Chem. Soc. v.90 G. Klopman
  20. J. Chem. Phys. v.20 K. Fukui(et al.)
  21. J. Chem. Phys. v.22 K. Fukui(et al.)
  22. Chem. Revs. v.57 M. A. Paul;F. A. Long
  23. The Chemist's Campanion A. J. Gordon;R. A. Ford
  24. J. Amer. Chem. Soc. v.82 R. H. Dewelf
  25. J. Amer. Chem. Soc. v.90 C. A. Bunton;J. H. Crabtree;L. Robinson
  26. J. Org. Chem. v.46 Z. Said;J. G. Tillett
  27. J. Korean Chem. Soc. v.28 Nack-Do sung;Yung-Hyang Lee;Tae-Rin Kim
  28. Double-Bond Functional Group S. Patai
  29. Can. J. Chem. v.44 J. F. Bunnett;F. P. Olsen
  30. J. Amer. Chem. Soc. v.96 J. F. Bunnett;R. L McDonald;F. P. Olsen
  31. Reaction Kinetict v.2 K. J. Laidler
  32. Advanved Organic Chemistry J. March
  33. Mechanism and Theory in Organic Chemistry T. H. Lowry;K. S. Richardson
  34. Mechanism and Theory in Organic Chemistry T. H. Lowry;K. S. Richardson