Benzenesulfonylimido Phosgene 의 加水分解 反鷹메카니즘과 反鷹速度論的 硏究

Kinetics and Mechanism of Hydrolysis of Benzenesulfonylimido Phosgene

  • 성낙도 (忠南大學校 農科大學 農化學科) ;
  • 한선호 (忠南大學校 理科大學 化學科) ;
  • 권기성 (忠南大學校 理科大學 化學科) ;
  • 김태린 (高麗大學校 理科大學 化學科)
  • Sung, Nack-Do (Department of Agricultural Chemistry, Chungnam National University) ;
  • Han, Sun-Ho (Department of Chemistry, Chungnam National University) ;
  • Kwon, Ki-Sung (Department of Chemistry, Chungnam National University) ;
  • Kim, Tae-Rin (Department of Chemistry, Korea University)
  • 발행 : 1984.08.20

초록

1 : 4 dioxane-물의 혼합용매중에서 benzenesulfonylimido phosgene의 가수분해 반응속도 상수를 자외선 분광법으로 측정하여 넓은 pH범위에서 잘 맞는 반응속도식을 구하였다. Grunwald-Winstein식에 적용하여 pH4.0에서 m=0.4의 값을 얻었으며 열역학적 활성화 파라미터 값은 pH4.0에서 ${\Delta}H^{\neq}$ = 15kcal/mol과 $ {\Delta}S^{\neq}$ =-21e.u 그리고 pH10.0에서는 $ {\Delta}H^{\neq}$ = 8kcal/mol, ${\Delta}S^{\neq}$ = -39e.u.이었다. 이와 같은 결과로부터 잘 알려져 있지않은 benzenesulfonylimido phosgene의 친핵성 첨가-제거 반응메카니즘을 정량적으로 잘 설명할 수 있었다.

The rate constants for the hydrolysis of benzenesulfonylimido phosgene at various pH were determined by ultraviolet spectrophotometry in 1 : 4 dioxane-water mixed solvents at 25$^{\circ}$C and a rate equation which can be applied over a wide pH range was obtained. Based on the Grunwald-Winstein equation, m = 0.4 was obtained. The thermodynamic activation parameters for the hydrolysis were ${\Delta}H^{\neq}$ = 15kcal mol$^{-1}$, ${\Delta}S^{\neq}$ = 21e.u. at pH 4.0 and $ {\Delta}H^{\neq}$ = 8kcal. mol$^{-1}$, ${\Delta}S^{\neq}$ = -39e.u. at pH 11.0, respectively. It was concluded that the hydrolysis of benzenesulfonylimido phosgene in 1 : 4 dioxane-water mixed solvents proceed via nucleophilic addition-elimination.

키워드

참고문헌

  1. The Chemistry of the Carbon-Nitrogene Double Bond S. Patai
  2. Catalysis in Chemistry and Enzymology W. P. Jencks
  3. The Chemistry of the Imidoyl Halides H. Ulrich
  4. J. Amer. Chem. Soc. v.84 E. H. Cordes;W. P. Jenks
  5. The Chemistry of the Carbon-Nitrogene Double Bond R. Bonnet
  6. The Chemistry of the Carbon-Nitrogene Double Bond C. Sandorfy
  7. J. Chem. Soc., Perkin II A. F. Hegarty;J. D. Cronin;F. L. Scott
  8. J. Chem. Soc., Perkin II A. F. Hegarty;T. A. F. O'Mahony;P. Quain;F. L. Scott
  9. J. Chem. Soc., Perkin II A. F. Hegarty;K. J. Digman
  10. The Chemistry of Imidate and Amidine S. Patai
  11. Organic Reactions v.14 A. C. Cope(et al.)(ed.)
  12. Chem. Rev. v.75 A. Willliams;K. T. Douglas
  13. J. Org. Chem v.39 F. M. Menger;L. E. Glass
  14. The thesis of ph.D. degree, Graduate School of Chungnam National University Sung Nack-Do
  15. Chem. Ber v.23 L. I. Smith
  16. Angew. Chem. Int. Ed. Engl. v.2 R. Huisgen
  17. Angew. Chem. Int. Ed. Engl. R. Huisgen
  18. Org. Syn. v.28 Frank;Smith
  19. Angew. Chem. v.99 K. Dickore;E. Kuhl
  20. Angew. Chem. Int. Ed. Engl. v.6 E. Kuhle;B. Ander;G. Zumach
  21. Belg. Pat. 656,843 B. Ander;E. Kuhl;Dickore
  22. Angew. Chem. v.74 H. Holtschmidt
  23. Angew. Chem. E. Kuhl
  24. Sadtler Standard Spectrum 1606 UV
  25. J. Amer. Chem. Soc. v.70 E. Grunwald;S. Winstein
  26. J. Amer. Chem. Soc. v.78 A. H. Fainberg;S. Winstein
  27. J. Chem. Soc. D. A. Brown;R. F. Hudson
  28. Mechanism in Organic Chemistry W. Roger Alder;R. Baker;J. M. Brown
  29. J. Amer. Chem. Soc. v.94 S. L. Johnson;D. L. Morrison
  30. Synthetic Methods of Organic Chemistry v.19 W. Theilheimer