On the Aquation of Dichloro Bis-(Ethylenediamine)-Chromium (III) Cation

Dichloro Bis-(Ethylenediamine)-Chromium (III) 양이온의 수화반응

  • Jung-Ui Hwang (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Jong-Jae Chung (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Soung-Oh Bek (Department of Chemistry, College of Natural Sciences, Kyungpook National University)
  • 황정의 (경북대학교 자연과학대학 화학과) ;
  • 정종재 (경북대학교 자연과학대학 화학과) ;
  • 백성오 (경북대학교 자연과학대학 화학과)
  • Published : 1984.04.20

Abstract

Aquation reaction kinetics of $[Cr(en)_2Cl_2]^+$complex was carried by the electric conductivity method. Its temperature range was $15^{\circ}C$ to $30^{\circ}C$ and pressure was varied up to 2,000 bars. The reaction rate was increased with increasing temperature, but was reversed to increasing pressure. The activation volume(${\Delta}V^{\neq}$) was increased with increasing temperature and decreased with increasing pressure. At $25^{\circ}C$ and 1 bar it was fairly small positive value, $1.82cm^2/mole$. Activation entropy change(${\Delta}S^{\neq}$) $was calculated as small negative value,-9.019 eu, at $25^{\circ}C$ and 1bar. Referring to the thermodynamic parameters, it was estimated that aquation reaction was proceeded by the interchange-dissociation(Id) mechanism.

$cis - [Cr(en)_2Cl_2]^+ $착물의 수화반응에 대한 연구를 전기전도도법에 의해. 온도는 $15^{\circ}C{\sim}30^{\circ}C$에서 압력은 $1{\sim}2000bar$의 범위에서 실시하였다. 반응속도는 온도가 증가함에 따라 증가하고, 압력이 증가하면 감소하였다. 활성화부피(${\Delta}V^{\neq}$)는 $25^{\circ}C$, 1bar에서 $1.82cm^2/mole$로 비교적 작은 양의 값을 나타내었으며, 이 값은 압력이 증가함에 따라 감소하고 온도 증가에 따라서는 증가하였다. 활성화엔트로피(${\Delta}S^{\neq}$)$는 $25^{\circ}C$, 1bar에서 -9.019 eu로 작은 음의 값을 나타내었다. 활성화파라미터의 값으로부터 수화반응의 메카니즘은 교환해리(Id)메카니즘인 것으로 밝혀졌다.

Keywords

References

  1. Chem. Rev. v.78 T. Asano;W. J. le Noble
  2. J. Amer. Chem. Soc. v.81 C. Walling;G. Metzger
  3. J. Amer. Chem. Soc. v.92 R. C. Neuman Jr.;R. J. Bussey
  4. Coord. Chem. Rev. v.14 T. W. Swaddle
  5. Inorg. Chem. v.18 D. R. Stranks;N. Vanderhoek
  6. Inorg. Chem. v.18 R. Van Eldik;G. M. Harris
  7. J. Amer. Chem. Soc. v.89 H. R. Hunt;H. Taube
  8. J. Amer. Chem. Soc. v.80 H. R. Hunt;H. Taube
  9. J. Amer. Chem. Soc. v.94 T. W. Swaddle;D. R. Stranks
  10. Inorg. Chem. v.13 S. B. Tong;T. W. Swaddle
  11. Inorg. Chem. Acta. v.34 D. A. Palmer;R. van. Eldik;T. P. Dasgupta;H. Kelm
  12. Inorg. Chem. v.10 Stephen C. Pyke;R. G. Linck
  13. Inorg. Chem. v.16 R. G. Linck
  14. Inorg. Chem. v.6 A. N. Sargeson;Q. H. Searle
  15. J. Amer. Chem. Soc. v.83 D. A. MacDonald;C. B. Garner
  16. Inorganic Synthesis v.2 C. L. Rollinson;J. C. Baoilar;W. C. Fernelius(ed.)
  17. J. Inorg. Nuclear Chem. v.18 D. T. Mac Donald;C. S. Garner
  18. Inorg. Chem. v.3 L. P. Quim;C. S. Garner
  19. Phil. Mag. v.3 E. A. Gujgenheim
  20. Kinetic and Mechanis A. A. Frost;R. G. Pearson
  21. Bull. Chem. Soc. Japan v.46 K. Tamura;Y. Oga;T. Imoto
  22. Inorg. Chem. v.18 R. van Eldik;D. A. Palmer;H. Kelm
  23. Inorganic Chemistry K. E. Pureell;J. C. Kotz