Molecular Oxygen in Solid State of Polymeric Tetraphenylporphinatocobalt(II)

고분자로 지지된 코발트(II) 테트라페닐포피린 화합물에서의 산소분자에 관한 연구

  • Chae Hee Kwon (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Chong Soo Han (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Hakze Chon (Department of Chemistry, Korea Advanced Institute of Science and Technology)
  • 채희권 (한국과학기술원 화학과) ;
  • 한종수 (한국과학기술원 화학과) ;
  • 전학제 (한국과학기술원 화학과)
  • Published : 1984.04.20

Abstract

The reversible oxygenation of a solid stae polymeric cobalt(II) porphyrin complex, PVP-CoTPP was studied at 0, -24 and $-78^{\circ}C$. When PVP-CoTPP was contacted with $O_2 $at$-78^{\circ}C$ the oxygen uptake increased with oxygen partial pressure. At about 700mmHg $O_2$, the amount of oxygen taken up corresponded approximately one oxygen molecule to one Co(II) complex. The amount of $O_2$ taken up by PVP-CoTPP decreased with increasing temperature. When $16O_2$ was admitted to the Co(II) complex a EPR signal corresponding to $O_2^-$ increased with a decrease in Co(II) signal. The results suggest that an electron is transfered from Co(II) in PVP-CoTPP to oxygen forming a $Co(III)-O_2^-$ complex where $O_2^- $is superoxide type.

$-24^{\circ}C$ 그리고 $-78^{\circ}C$에서 코발트 화합물인 PVP-CoTPP 즉 poly(4-vinyl pyridine)-mesotetraphenylporphinatocobalt(II)의 가역적인 산소화반응에 대해서 살펴보았다. PVP-CoTPP를 $-78^{\circ}C$에서 산소와 접촉시키면 산소분압에 따라 흡착량이 증가하여 산소분압이 700mmHg에 이르면 흡착되는 산소의 양이 Co(II)와 $O_2$가 같은 몰비로 붙는 양과 거의 비슷해졌다. 반면에 -24, $0^{\circ}C$로 온도가 높아짐에 따라 산소의 흡착량은 점점 더 감소하였다. 한편 ERR분광기에 의해 $PVP-CoTPP-O_2$화합물을 살펴본 결가 Co(II)의 전자가 $O_2$쪽으로 이동하여 수퍼옥사이드 형태의 $Co(III)-O_2^-$를 이루고 있는 것 같다

Keywords

References

  1. J. Amer. Chem. Soc. v.78 A. H. Corwin;Z. Reyes
  2. Chem. Rev. v.63 L. H. Vogt, Jr.;H. M. Faigenbaum;S. E. Wiberly
  3. J. Chem. Soc. A C. Floriani;F. Calderazzo
  4. Acta. Crystallogr., Sect. B v.27 L. A. Lindblom;W. P. Schaeler;R. E. Marsh
  5. J. Amer. Chem. Soc. v.95 D. V. Stynes;H. C. Stynes;J. A. Ibers;B. R. James
  6. Acc. Chem. Res. v.8 F. Basolo;B. Hoffman;J. Ibers
  7. Acc. Chem. Res. v.10 J. P. Collman
  8. J. Amer. Chem. Soc. v.96 J. P. Collman;R. G. Gagne;O. A. Reed
  9. J. Amer. Chem. Soc. v.97 J. P. Collman;R. G. Gagne;C. A. Reed;T. R. Halbert;G. Lang;W. T. Rooinson
  10. J. Amer. Chem. Soc. v.95 J. P. Collman;C. A. Reed
  11. J. Amer. Chem. Soc. v.97 O. Leal;F. Basolo;R. L. Burwell, Jr.
  12. J. Org. Chem. v.32 A. D. Adler;F. R. Longo;J. D. Finarelli
  13. J. Amer. Chem. Soc. v.73 G. D. Dorough;J. R. Miller;F. M. Huennekens
  14. J. Catal. v.18 K. Yamamoto;T. Kwan
  15. J. Amer. Chem. Soc. v.96 B. B. Wayland;J. V. Minkiewicz;M. E. Abd-Elmageed
  16. J. Amer. Chem. Soc. v.95 F. A. Walker
  17. J. Amer. Chem. Soc. v.95 D. V. Stynes
  18. Ph. D. Thesis, Korea Advanced Institute of Science and Technology C. S. Han
  19. J. Amer. Chem. Soc. v.98 B. S. Tovrog;D. J. Kitko;R. S. Drago