陰 Ion 交換樹脂에 依한 稀土類元素의 溶離行動에 關한 硏究

The Elution Behavior of Rare Earth Elements in Diethylene Triamine N,N,N',N',N

  • 정오진 (조선대학교 문리과대학 화학과) ;
  • 김일두 (조선대학교 문리과대학 화학과) ;
  • 이계수 (전남대학교 자연과학대학 화학과) ;
  • 차기원 (인하대학교 이과대학 화학과)
  • Oh Jin Jung (Department of Chemistry, Chosun University) ;
  • Il Doo Kim (Department of Chemistry, Chosun University) ;
  • Gyou Soo Lee (Department of Chemistry, Jun nam National Univeristy) ;
  • Ki-Won Cha (Department of Chemistry, Inha University)
  • 발행 : 1984.02.20

초록

DTPA 용리액의 pH와 농도를 변화시키면서 음이온 교환수지관을 이용해서 희토류 원소들을 분리하는 연구를 하였다. 희토류 원소들의 가장 좋은 분리조건은 0.025M DTPA, pH 8.35이 있었으며 희토류 원소들의 용리순서는 Sm을 제외하고 희토류 원소들의 원자번호 순서와 일치하였다. 0.025M DTPA, pH 8.35에서 분리한 인접 희토류 원소들의 분리값은 3.03~1.25이었으며 그중 Ce/Pr이 3.03으로 최대값을,Eu/Gd은 최소값을 각각 갖는다. 0.025M DTPA 희토류 원소들을 용리하였을 때, pH 8.0~8.6의 넓은 범위에서 비교적 좋은 분리현상을 보였다.

The separation of the rare earth elements with diethylene triamine N, N, N', N', N"-pentaacetic acid (DTPA) as eluent was carried out at different pH and concentrations by using anion exchange resin column. The rare earth elements were absorbed on the upper of the resin column and the best condition of the separation behavior was 0.025M of DTPA at pH 8.35. The elution order of the rare earths was in the order of the atomic number of the rare earth elements except samarium. The resolution of adjacent rare earth elements that have been separated with 0.025M-DTPA as eluent, was from 3.03 to 1.25 at pH 8.35. Resolution of Ce-Pr was maximum value in 3.03 and Eu-Gd was minimum in 1.25 at condition mentioned above, respectively. The resolution of rare earth elements separated with 0.025M DTPA eluent was very good at pH range of 8.0~8.6.

키워드

참고문헌

  1. Anal. Chem. v.24 G. B. Wengert;R. C. Walket;M. F. Louchs;V. A. Stenger
  2. Mekerochim, Acta. v.55 H. Flaschka
  3. Nippon Kagaku Zasshh v.79 G. Muto;Miyama
  4. Anal. Chem. v.46 V. A. Fassel
  5. Anal. Chem. v.35 H. Onishi;V. B. Chales
  6. Anal. Chem. v.30 R. H. Heidel;V. A. Fassel
  7. J. Nat. Sci. Seoul Nat. Univ Young Gu Ha;P. D. Silva;V. A. Fassel
  8. Naturwissenschaften v.25 W. Fisher;W. Dietz;O. Jubermann
  9. Z. Elektrochem. v.42 E. Lange;K. Nagel
  10. J. Heiv. Chem. Acta. v.34 G. Schwarzenbach;W. Biederman
  11. J. Inorg. Nucl. Chem. v.31 Zenzi Hagiwara
  12. Nippon Kagaku Zasshi v.89 T. Yamabe;K. Yamagata;M. Seno
  13. J. Inorg. Nucl. Chem. v.4 J. P. Surls, Jr;G. R. Choppin
  14. J. Amer. Chem. Soc. v.76 F. H. Speeding;J. E. Powell
  15. J. Amer. Chem., Soc. v.69 G. E. Boyd;J. Schubert;A. W. Adamson
  16. J. Chromatogr. v.89 Paul J. Karol
  17. J. Chromatogr. v.75 G. Brunisholz;R. Roulet
  18. J. Chromatogr. v.74 N. Cvjecticanin
  19. J. Chromatogr. v.87 Tetsu Hayashi;Takeo Yamabe
  20. J. Amer. Chem. Soc. v.76 F. H. Spedding;J. E. Powell
  21. J. of Chromatogr. v.85 Tsuneno Shimizu;Kiyoshi Ikeda
  22. J. of Chromatogr. v.62 L. Kogang;R. Rather
  23. J. Phys. Chem. v.63 Y. Marcus;F. Nelson
  24. J. Korean Inst. Mineral and Mining Enqineers v.15 S. S. Kim;K. W. Cha;H. C. Lee
  25. J. Amer. Chem. Soc. v.72 F. H. Speeding;E. I. Rulmer;T. A. Butler;J. E. Powell
  26. J. Amer. Chem. Soc. v.69 E. R. Tompkins;J. X. Khym;W. B. Cohn
  27. Chemical Reviews v.65 T. Moeller;D. E. Martin;L. C. Thompson;R. Ferrus;W. F. Randall
  28. Chemical Reviews v.69 F. H. Spedding;A. F. Voigt;E. M. Gadrow;N. R. Sleight
  29. J. Amer. Chem. Soc. v.69 W. Mayer;E. R. Tompkins
  30. Chem. Anal. (Warsaw) v.4 R. Dybenzynski
  31. Accession No, 43411, Report No. BNWL-SA-677 E. J. Wheelwright;E. P. Roberts;N. L. Upson;L. J. Kirby;J. R. Myers
  32. Anal. Chem. v.30 C. C. Stewart;D. Kato
  33. Korean Chem., Soc. v.24 Ki Won Cha;Jung Hae Lee;Young Gu Ha
  34. Modern Methods of Chemical Analysis Pecsok;Shields;Cairns;Mcwiilliam
  35. J. Inorg. Nucl. Chem. v.11 R. Harder;S. Chaberek
  36. Chem. Abst. v.66