COMMUNICATIONS

A Short Synthesis of (Z)-7-Eicosen-11-one, the Pheromone of Peach Fruit Moth

Suck-Ku Kang[†] and Hyun-Sung Cho

Department of Chemistry, Sung Kyun Kwan University, Natural Scienec Campus, Suwon 170, Korea (Received November 28, 1983)

(Z)-7-Eicosen-11-one, an active component of the famale sex pheromone of the peach fruit moth, *Carposina niponenesis* Walsingham, a major economic pest of apple, peach and other fruits, was isolated by Tamaki¹ in 1977. Several syntheses of (Z)-7-eicosen-11-one have been reported².

To our knowledge, the direct conjugate addition of alkalior alkaline earthacetylides^{3,4} to enone system has not previously been observed in the literature, but a few examples of conjugate addition of alkynyl organoboranes⁵ and alkyl organolanes⁶ to α , β -unsaturated ketones have been known. We wish to report a short synthesis of the title compound (1) based on conjugate addition of organoborane to α , β unsaturated ketone system.

Lithium 1-octynide was obtained from 1-octyne (2) using n-BuLi (1.0 mol equiv.) in dry THF at -78° C. This acetylide was treated *in. situ.* with B-methoxy-9-BBN (1.0 mol equiv.) and the reaction mixture was strirred for 2 hr at -78° C. Then boron trifluoride diethyl etherate (1.3 mol equiv.) was added and the mixture was stirred for 1 h at -78° C and allowed to warm to room temperature. From the reaction mixture, the volatiles were distilled off to yield a yellow solid which was supposed to be B-1-octynyl-9-BBN (3). This solid was dissolved in dry pentane and 1-dodecen-3-one⁷

(4) was added and stood overnight at room temperature. After work-up, 7-eicosyn-11-one was obtained by Kugelrohr distillation (b. p.) 109-118°C/10⁻³ mm) in 46 % overall yield from 1-octyne (2), IR (neat) 2260, 1720, 1450, 1370 cm⁻¹; NMR (CDCl₃) δ_{TMS} 0.90 (6H), 1.05-1.75 (22H), 1.90-2.60 (8H). Catalytic hydrogenation with palladium on barium sulfate afforded the desired (Z)-7-eicosen-11-one⁸ (1), IR (neat) 2940, 1720, 1460, 1375 cm⁻¹; NMR (CDCl₃) δ TMS 0.90 (6H), 1.10-1.70 (22H), 1.80-2.75 (8H), 5.35 (2H); MS, m/e 295 (M⁺).

Acknowledgement. We thank the Korea Science and Engineering Foundation for financial support.

References

- Y. Tamaki, K. K. Honma and K. Kawasaki, *Appl. Entmol. Zool.*, **12**, 60 (1977).
- (2) (a) Y. Naoshima, M. Kawakubo, S. Wadayabashi and S. H. Hayashi, Agric. Biol. Chem., 45, 439 (1981); (b) K. Mori, S. Tamada and M. Matsui, Agric. Biol. Chem., 42, 191 (1978); (c) Sagami Chemical Research Center Japan Kokai Tokkyo Koho JP 81, 118 036 (Chemical Abstract 96 68339e).
- G. H. Posner, Cu-acetylides do not add to enones, *Org. React.* 19, 1 (1972); E. J. Corey and D. J. Beams, *J. Arner. Soc.*, 94, 7210 (1972).
- (4) R. Locher and D. Seebach, Angew. Chem. Int. Ed. Engl., 20, 569 (1981).
- (5) (a) M. Bruhn, C. H. Brown, P. W. Collins, J. R. Palmer,
 E. Z. Dajani and R. Pappo, *Tetrahedron Lett.*, **32**, 235 (1976); (b) P. Jacob, III and H. C. Brown, *J. Amer. Chem. Soc.*, **98**, 7832 (1976); (c) J. A. Sinclair and H. C. Brown, *J. Org. Chem.*, **41**, 1078 (1976); (d) J. A. Sinclair, G. A. Molander and H. C. Brown, *J. Amer. Chem. Soc.*, **99**, 954 (1977).
- (6) (a) R. Pappo and P. W. Collins ,Tetrahedron Lett., 28, 2626 (1972); (b) R. T. Hansen, D. B. Carr and J. Schwartz, J. Amer. Chem. Soc., 100, 2244 (1978).
- (7) 1-Dodecen-3-one was prepared from decylaldehyde

COMMUNICATIONS

 $\epsilon_{\rm eff}$

.

- in two steps (61%);(1) vinyImagnesium bromide addition
 (2) pyridinium chlorochromate oxidation; J. H. Babler,
- B. J. Invergo and S. J. Sarussi, *J. Org. Chem.*, **45**, 4241

(1980).

(8) (Z)-7-Eicosen-11-one prepared by this method was proved biologically active by its field tests in South Korea.

PMO Theory of $\pi^* - \pi^*$ Interaction

Ikchoon Lee* and Kiyull Yang

Department of Chemistry, Inha University, Incheon 160. Korea (Received February 11, 1984)

Recently chemical as well as physical concequences of $\pi^*-\pi^*$ orbital interaction have been demonstrated¹. Direct experimental examination of such orbital interaction has been practicable using electron transmission spectroscopy (ETS)^{1b,2}. Two important, yet unaccounted-for, features of the experimental results on $\pi^*-\pi^*$ orbital interactions through 2 and 4 C-C σ bonds (N=2 and 4) of the connecting σ frawework² were: (i) level splitting (ΔE) of the symmetry adapted orbitals (SAO), π^*_+ and π^*_- , is considerably greater than that for the corresponding $\pi-\pi$ interactions, and (ii) the average level (ε_{av}) of the two SAO is above the basis level (ε_0), the π^* level for monoene.

In this work we will show that these features are the results of enhanced effect of through-space interaction (TSI) in the $\pi^*-\pi^*$ interaction compared with that in the $\pi-\pi$ interaction.

To second-order in overlap S, the levels ε_+ and ε_- of the SAO, π_+ and π_- , (or n_+ and n_-) had the expressions (1a) and (1b) for N=odd and even systems respectively³.

$$\left. \begin{array}{l} \varepsilon_{+} \cong e' - \delta e_{l} + 2y(1 + \alpha + \beta) \\ \varepsilon_{-} \cong e' + \delta e_{h} - 2x(1 + \alpha - \beta) \end{array} \right\}$$
(1a)

$$\sum_{l=1}^{\infty} \frac{\varepsilon' - \delta e_l - 2x(1 + \alpha - \beta)}{\varepsilon_{l=1} \varepsilon' + \delta e_b + 2y(1 + \alpha + \beta)}$$

$$(1b)$$

where e', which is negative, is the environment adjusted level of the basis level, δe_l and δe_k are depression and elevation of e' due to TSI, and x, y, α and β are positive quantities difined as:

$$x = \frac{\langle \pi | H' | \Psi_{h0} \rangle^2}{\Delta e}, \quad y = \frac{\langle \pi | H' | \Psi_{h0} \rangle^2}{\Delta e},$$

$$\alpha = \left| \frac{e''}{\Delta e} \right|^2 + \left| \frac{e''}{\Delta e} \right|^4 + \cdots, \text{ and}$$

$$\beta = \left| \frac{e''}{\Delta e} \right| + \left| \frac{e''}{\Delta e} \right|^3 + \cdots^{3,4}.$$

Equations (1a) and (1b) clearly indicate that the effects of second-order perturbation (through-bond interaction (TBI)) is to elevate one of the SAO (π_{\pm} and π_{-} for N=odd and even cases respectively) substantially but to depress the other by a small amount. These are natural consequences of narrow (wide) energy gaps involved in the interactions of π_{\pm} with the framework HO- σ (LU- σ^{*}) orbitals. The depression effect on a SAO has been shown to be small but by no means negligible⁵, as expected from eq(1), since $(\beta - \alpha) < 1.0^3$.

In $\pi^*-\pi^*$ orbital interactions, the environment adjusted level of the basis orbital, e^* , should be approximately equal to the π^* level of ethylene since there will be no first-order (electrostatic) interaction between an empty π^* orbital and a neutral molecule. The basis level is therefore given as

$$\varepsilon_0 \cong e^* - x \left(1 + \alpha + \beta\right) + y \left(1 + \alpha - \beta\right) \tag{2}$$

where $e^* \cong e_{\pi^*}$ (ethylene)>0 and x, y, α and β are positive quantities similarly defined as above. It is evident from eq (2) that the basis level is somewhat depressed relative to the ethylenic π^* level since the second-order effect is to depress (by an amount x $(1+\alpha+\beta)$) more than to elevate (by an amount $y(1+\alpha-\beta)$) the level e^* . This is in accord with the experimental results² (see Table).

The environment adjusted levels e_+ and e_- for the SAO, π^*_+ and π^*_- , are obtained using the usual approximation, $H_{mn} \simeq -kS_{mn}^3$, where k is a positive constant.

$$e_{\pm} \cong e^{*} + \langle \pi^{*} | H' | \pi^{*} \rangle \cong e^{*} - \delta e_{l} \\ e_{-} \cong e^{*} + \langle \pi^{*} | H' | \pi^{*} \rangle \cong e^{*} + \delta e_{h}$$

$$(3)$$

where $\delta e_i \cong kS(1-S)$ and $\delta e_i \cong kS(1+S)$. The level splitting, ΔE_S , and energy destabilization, $\delta \varepsilon_S$, as a result of TSI are thus given as,

$$\Delta E_S = e_- - e_+ = \delta e_l + \delta e_h \cong 2kS \tag{4}$$

$$\delta \varepsilon_{S} = \delta e_{h} - \delta e_{l} \cong 2kS^{2} \tag{5}$$

The corresponding ones for π - π TSI are³: $\Delta E_S(\pi) \cong 2S$ $(k+e_1)$ and $\delta \varepsilon_S \cong 2(k+e_1)S^2$ where e_1 is the first-order level depression of π orbital, $e_1 < 0$. Hence $\Delta E_S(\pi^*)$ and $\delta \varepsilon_S(\pi^*)$ should be larger (positive quantities) than $\Delta E_S(\pi)$ and $\delta \varepsilon_S(\pi)$ respectively.

Inclusion of second-order (TBI) terms gives the final expressions (6a) and (6b) for N=odd and even cases respectively,

$$\varepsilon_{+} \cong e^{*} - \delta e_{l} + 2y(1 + \alpha - \beta)) \\\varepsilon_{-} \cong e^{*} + \delta e_{h} - 2x(1 + \alpha + \beta))$$
(6a)

$$\varepsilon_{+} \cong e^{*} - \delta e_{I} - 2x(1 + \alpha + \beta))$$

$$\varepsilon_{-} \cong e^{*} + \delta e_{k} + 2y(1 + \alpha - \beta))$$
(6b)

Thus in $\pi^* - \pi^*$ TBI, one of the SAO (π^* and π^* for N