DOI QR코드

DOI QR Code

Molecular Orbital Calculation for Polymeric Beryllium Hydride, Polyeithylene and Polymeric Boron Hydride According to the Pseudo-Lattice Method

  • Oh, Seok-Heon (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Jhang, Man-Chai (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Jhon, Mu-Shik (Department of Chemistry, Korea Advanced Institute of Science and Technology)
  • Published : 1984.02.20

Abstract

The pseudolattice calculations in the CNDO/2 level of approximation are carried out for polymeric beryllium hydride, polyethylene and polymeric boron hydride. Since there is no evidence on the geometry for polymeric boron hydride, the two possible geometries are assumed. One is a polyethylene-type geometry and the other is a polymeric beryllium hydride-type geometry. In order to compare their relative stability, we calculate polyethylene and polymeric beryllium hydride and then compare with polymeric boron hydride having the assumed structures. The total energy calculation indicates that a polymeric beryllium bydride-type geometry is more stable than a polyethylene-type geometry. Our results obtained for polyethylene are in good agreement with those given by CNDO/2 crystal orbital. From the convergence problem with respect to the number of unit cells (M), the calculation with value of 4 for M can be considered to give the convergence limit results.

Keywords

References

  1. Theoret. Chim. Acta. v.14 A. Rossi;C. W. David;R. Schor
  2. J. Chem. Phys. v.53 H. Fujita;A. Imamura
  3. Chem. Phys. Lett. v.8 G. Morosi;M. Simonetta
  4. J. Chem. Phys. v.54 K. Morokuma
  5. Chem. Phys. Lett. v.14 J. M. Andre;J. Delhale;G. S. Kapsomenos;G. Leroy
  6. Faraday Discuss v.II B. J. McAloon;P. G. Perkins
  7. J. Chem. Phys. v.43 J. A. Pople;D. P. Santry;G. A. Segal
  8. J. Chem. Phys. v.44 J. A. Pople;G.A. Segal
  9. Approxinate Molecular Orbital Theory J. A. Pople;D. L. Boveridge
  10. J. Phys. Chem. v.87 K. T. No;M. S. Jhon
  11. J. Phys. Chem. J. S. Kim;K. J. No;M. S. Jhon
  12. Z. Naturforsch. v.6b E. Wiberg;R. Bauer
  13. J. Chem. Phys. v.56 J. Bacon;D. P. Santry
  14. Theoret. Chim. Acta. (Berl) v.51 R. David;G. Perkins
  15. J. Polym. Sci. v.8 S. Kavesh;J. M. Schultz
  16. J. Polym. Sci. v.11 T. Yemni;R. L. McCullough
  17. Theoret. Chim. Acta. (Berl) v.10 R. Ahlrichs;W. Kutzelnigg
  18. Polymer Single Crystals P. H. Geil
  19. Physics and Chemistry of the Organic Solid State v.I H. D. Keith
  20. Chem. Phys. Lett. v.5 J. M. Andre;G. Leroy
  21. Chem. Phys. Lett. v.8 J. M. Andre;G. S. Kapsomenos;G. Leroy
  22. Chem. Phys. Lett. v.17 J. M. Andre;J. Delhalle
  23. Chem. Phys. Lett. v.6 K. Morokuma

Cited by

  1. Ab initio SCF calculations of the linear infinite chain of LiH according to the pseudo-lattice method vol.70, pp.3, 1984, https://doi.org/10.1007/bf00531165
  2. Vibrational studies of hcn and dcn in matrix vol.34, pp.suppl22, 1988, https://doi.org/10.1002/qua.560340820