DOI QR코드

DOI QR Code

The Effect of Solvent on the Dipole Moments for Organotin(Ⅳ) Complexes

  • Ahn, Sang-Woon (Department of Chemistry, Jeonbug National University) ;
  • Kim, Dong-Heu (Department of Chemistry, Jeonbug National University) ;
  • Oh, Se-Woung (Department of Chemistry, Mog Po National College)
  • Published : 1984.02.20

Abstract

The effect of solvent on the dipole moments for (chloromethyl) stannanes has been investigated by applying EHT calculation for the isomers of trigonal bipyramidal Sn(Ⅳ)$Cl_4X$ and $Cl_n$Sn(Ⅳ) $(CH_2Cl)_{4-n}$, octahedral Sn(Ⅳ)$Cl_42X$ and $Cl_nSn$(Ⅳ)$(CH_2Cl)_{4-n}$ 2X type complexes in dioxane and ethylacetate solutions (X: dioxane or ethylacetate). For Sn(Ⅳ)$Cl_4$ in dioxane solution, the calculated dipole moment for the trigonal bipyramidal Sn(Ⅳ)$Cl_4X$ type complex [isomer (b)] is closer to the experimental dipole moment than octahedral Sn(Ⅳ)$Cl_4X$2X type complexes. This calculated dipole moment suggests that Sn(Ⅳ)$Cl_4X$ may have the trigonal bipyramidal structure in dioxane solution. However, the calculated dipole moment for octahedral $Cl_3$Sn(Ⅳ) ($CH_2$Cl)2X type complex [Isomer (d)], ClSn(Ⅳ)(CH2Cl)32X type complex [Isomer(k)] and Cl2Sn(Ⅳ)(CH2Cl)22X type complex [Isomer(h)] are closer to the experimental dipole moments than other isomers for octahedral complexes and trigonal bipyramidal complexes. Such theoretical results indicate that $Cl_3Sn$(Ⅳ )($CH_2Cl$), ClSn(Ⅳ)$(CH_2Cl)_3$ and $Cl2Sn$(Ⅳ)$(CH_2Cl)_2$ complexes may have octahedral structures, Isomer(d), (k) and (h) in ethylacetate solution, respectively.

Keywords

References

  1. J. Phys. Chem. v.61 E. G. McRae
  2. Chem. Revs. v.60 R. K. Ingram;S. D. Rosenberg;H. Gilman
  3. Progress in NMR Spectroscopy v.11 V. S. Peterosy
  4. J. Chem. Soc. v.1525 R. Hulme
  5. Canad. J. Chem. v.48 F. P. Mullins
  6. Inorg. Chem. v.8 C. Z. Moore;W. H. Nelson
  7. Inorg. Chem. v.6 M. A. Mullins;C. Curran
  8. Canad. J. Chem. v.49 F. P. Mullins
  9. Inorg. Chim. Acta v.49 E. N. Abel;S. K. Bhargava;K. G. Orrell;V. Sik
  10. Zh. Obsh. Khim. v.46 T. Ya. Mcl'nikova;Yu. V. Kolodyazhnyi;A. K. Prokof'ev;O. A. Osipov
  11. J. Inorg. Nucl. Chem. v.32 R. C. Paul;H. R. Singal;S. L. Chadha
  12. J. Chem. Phys. v.47 E. Clementi;D. L. Raimond;W. P. Reinhart
  13. J. Amer. Chem. Soc. v.90 B. B. Chastain;F. A. Rick;R. L. Pruett;H. B. Gray
  14. Chem. Zvesti v.33 P. Pelikan;M. Liska;L. Turinagy
  15. Adv. Quantum Chem. v.18 Berthier
  16. Inorg. Chem. v.1 C. J. Ballhausen;H. B. Gray
  17. Z. Naturforsch v.A17 V. L. Bilot;A. Kawski
  18. Progress in Inorg. Chem. v.8 J. D. Donaldson
  19. Stereochemistry and Bonding in Inorganic Chemistry J. E. Fergusson
  20. J. Chem. Ed. v.51 J. J. Musher
  21. J. Korean Chem. Soc. v.62 S. Ahn;J. H. Kim;K. H. Lee;G. C. Shin
  22. J. Chem. Phys. v.35 F. A. Cotton
  23. Inorg. Chem. v.3 H. D. Bedon;S. M. Horner;S. Y. Tyree, Jr.
  24. Molecular Orbital Theory C. J. Ballhausen;H. B. Gray
  25. J. Chem. Phys. v.38 E. Clementi;D. L. Raimond
  26. Adv. in Quantum Chem. v.1 S. Basu
  27. J. Amer. Chem. Soc. v.67 J. Hinze;H. H. Jaffe
  28. Chemical Structure and Bonding L. Dekock;H. B. Gray
  29. Introduction to Applied Quantum Chemistry S. P. McGlynn;L. G. Vanquickenborne;M. Kinoshita;D. G. Carroll
  30. J. Chem. Phys. v.54 A. Reger;I. Eliezer
  31. J. Amer. Chem. Soc. v.79 L. Sacconi;P. Paoletti;G. D. Re
  32. Dipole Moments in Inorganic Chemistry G. J. Moody;J. D. R. Thomas
  33. J. Chem. Soc. v.A P. Suppan
  34. Adv. in Quantum Chem. v.7 A. T. Amos;B. L. Burrows
  35. Modern Quantum Chemistry IlB W. Liptay
  36. J. Chem. Phys. v.45 D.G. Carroll;P. McGlynn