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Abstract

We Observe a sequence of i. i. d random variables with density f or g. Only if g is true we
should stoo the ovrocess. Hence. the testing problem is completely described by a stopping time.
Among all stopping times with error probability of first kind not exceeding a given bound, the
one-sided sequential probability ratio test has smallest expected sample size if g is true. Moreover,
the generalized one-sided SPRT has smallest expected sample size for g in the class of stopping times

with expected sample size under f not falling below a given bound.

1. INTRODUCTION

Let y,, y,, --- be independent and identically distributed random variables observable one at a
time and having probability density f or g with respect to a sigma-finite measure u on the
space where each y takes values. We assume that f and & are non-equivalent, Testing whether
f or g is the true density the sequential probability ratio test (SPRT) is best in the following
sense. Among all (fixed-sample or sequential) tests whose error probabilities do not exceed
those of the SPRT, the latter has the smallest expected sample size for both f and g. This
statement was first proved, for the subclass of tests with finite expected sample size for both
fand g, by Wald and Wolfowitz (10). Since then, the statement as well as its proof has
undergone some refinements. For an account of the literature and a new, elegant derivation of
the SPRT’s optimal property from a more general setting, the so-called modified Kiefer-Weiss
problem, see the article of Lorden(6).

While the SPRT is best in the broad class of tests controlling both sample size and terminal
decision, it is also interesting to have best tests in the smaller class with sample size or
terminal decision not at the stattistician’s disposal. For fixed sample sizes, Neyman and Pearson
(7) gave in 1933 the best test, i.e. the most powerful one for a given level of significance,

The present paper is concerned with the contrary extreme. We confine ourselves to tests which
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are pure stopping times, since the terminal decision always is, say g. Such a situation is typical
for the area of statistical process control, If the process is in control (i.e., f is true) we would
like to continue sampling indefinitely, thus not interrupting the process, In the case of the
process being out of control(ie., g is true), sampling should be stopped as soon as possible. By
heavily drawing on chapter 5 of Chow, Robbins and Siegmund (1), we will show that one-sided
SPRTs are ‘optimal’ for this testing problem, (A one-sided SPRT is a SPRT without lower
boundary.) Since there are two ways of formalizing the desire to continue sampling when f is
true, we will have two optimality criteria, one leading to ordinary one-sided SPRTs with fixed
decision boundary, the other one to generalized one-sided SPRTs with moving boundary.

In section 2, the optimality properties are stated, followed by their proofs in section 3. Some
remarks concerning previous research on the subject matter, {particularly on power-one tests,
are given in section 4.

2. OPTIMALITY PROPERTY OF THE ONE-SIDED SPRT:

The tests we have to consider are extended stopping times N, 0<N< oo, defined on a proper
product space, with respect to a sequence of sigma-fields FyCCF,C-:---, (We partly join notation
and terminology of (6).)

Let F and G be the probabilities referring to f and g, and let f, and g, denote the likelihoods
(Radon-Nikodym derivatives) for #=0, 1,--- observations, e.g.

fa=f(yD)f(yy) for nzl, foi=1.
Definition. A one-sided sequential probability ratio test is a stopping time S such that for

some A>>0 and for n=0,1, ---

{S=n)C{g./faz A}

{S>n}c {gn/fn-S—A} a.s. F,G,
A generalized one-sided sequential probability ratio test is a stopping time 7 such that for
7n=0,1, -+ and some A,>0

{T=n}C {gn/fngAn}

{T>n}C{ga/frs4n) as. F,G.
As indicated in the section above there are two ways to describe the desire to continue sampling
indefinitely if f is true. We may control the probability of stopping if f is true, F(N< ), i.e.,
doing the error of first kind. Alternatively, we may require the expected stopping time Er(N)
to exceed a given bound. Hence we have two different conditions when looking for a stopping

time which minimizes the expected stopping time E;(N).
Let 0<a<1 and 7>0.

Proposition 1. Let S be a one-sided SPRT with F(S<w)=a. If N is a stopping time with
F(N<o)=Za, then E;(N)=Eq(S).

Proposition 2. Let 7 bd a generalized one-sided SPRT with Ep(T)=7. If N is a stopping
time with Er(N)Z=7r, then E;(N)ZEg(T).



3. PROOFS

Unlike the proofs of the SPRT’'s optimum character, which all solve an auxiliary Bayesian
problem, we can directly approach the proofs of propositions 1 and 2 by using the methed of
undetermined multipliers.

Lemma. Let # and v be real-valued functions defined over a space Z.

a) If z,=Z minimizes »(z) +k-v(z) for some k>0, and if v(z,) =¢, then z, minimizes «(z) in
the set {z&=Z : v(z) <c}.

b) If z,=Z minimizes u(z) —A-v(2) for some 2>>0, and if v(z,) =¢, then z, minimizes «(z2) in
the set {z&Z: v(2)>c)}.

The lemma is easy to prove and of some utility in statistical hypotheses testing (see e.g. (4)).

With Z being the set of stopping times, # the expected stopping time under G and » the
probability of finite termination, and the expected stopping time under F, respectively, this
lemma allows to prove propositions 1 and 2 by means of methods given in chapter 5 of (1].

Proof of proposition 1. It is sufficient to minimize
Eo(N)+k-F(N<o0),

This expression equals
z n-g,,d,u"+k-§ ffnd,u”

n=9 =0
{N=n} {N=n}

il

ﬁi_ 18
>

f (n+k'fn/gn) 'gndﬂn
{N=n}

=Ec(N+k-fn/gn).

We set —xz=n+k-fa/g, for n=0,1, -, and can immediately apply the corellary of (1, p. 105).
Observing that f./g. is a stationary Markov sequence, and defining B= {z=IR* : —k-22V,(2)],
where V,(2) is the ‘value’ of the stochastic sequence{—n—k-f./gs, Fa}o™ as defined in (1), we
get as optimal stopping time o :

o=inf{n=1: f./g.EB5}.

Now, V,(-) is continuous and convex, and V,(0)=1. Thus, there is a constant ¢>0, which
is a function of %, such that B= {z&IR* :z=(}, and

o=inf{n=1: gu/fazc'}.

Noting that ¢ is a one-sided SPRT and taking a ocne-sided SPRT § with F(S§<w)=a,
proposition 1 is proved.

Proof of proposition 2. We minimize

Eq(N)—A-Ep(N)

NGE:

f (nwz'n'fn/gn)gnd,u"
0
{N=n}
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=Eq(N~A-N-fx/gn).

now, for n=0,1, -, we put X,=2A-%-fo/gn—", Za=fu/gn wal2n)=—1, and ¢,(z,) =A-n-z,* By
means of the remark in (1, p.105), we then get as optimal stopping time

inf{nz1:9,(z:) 2V, (220},

where V,(z,) is again as in (1). Since ¢.(0)=0, V,(0)=-», and V,(-) convex, there exist
¢ >0, n=0,1,--, depending on A, such that

{Zn : ¢n(zn) = V"(Z,,)} ={zn: 2, §Cn}-
Thus, the optimal stopping time is
lnf{n;l . gn/fngcn—l}y

which is a generalized one-sided SPRT. Taking a generalized one-sided SPRT T with Ex(T) =7
completes_ the proof.

4, SOME REMARKS

The optimality property of one-sided SPRTs, as stated in proposition 1, was first mentioned,
without proof, for normal densities by Darling and Robbids (2). Later, the optimality property
was claimed for densities of a one-parameter family by Robbins and Siegmund (9), referring
to (1) for a proof. Indeed, from a purely technical point of view, this indication is suitable,
and our proof is nearly identical to (1, p.108). However, in (i), a linear combination of
F(N< o) and E;(N) is minimized with a priori probabilities # for f and 1-# for g as weights.
Even putting k=x/(1-7) does not support the interpretation as in (9), since k is then determined
by 7 and can not be chosen appropriately as required in our proof.

If the densities in question belong to the one-parameter exponential family the likelihood
ratio of the (generalized) one-sided SPRT can be expressed through the sample sum. The resul-
ting stopping time is often called ‘power-one test’ or ‘open-ended test’(e.g. Lai (3) and Lorden
(5)). Though the literature about these tests has grown considerably in the last decade, to our
knowledge it has not previously made clear if and in which sense they are optimal.

As for two-sided SRRTs it is extremely difficult, too, to determine the boundaries A and 4,
of one-sided SPRTs. In the one-parameter exponential case we may use the literature on power-
one tests where approximations of average sample sizes can be found(e.g. (3,8)).
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