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Abstract

A deterministic multiproduct, facility-in series multiperiod production planning model is analyzed,
where each period demand for the product of a facility appear in a fixed proportion of that for the
product of the immediately following facility. The model considers concave production and inventory
costs, which can depend upon the production in different facilities. No backlogging is allowed. It is
shown that the model is represented via a single source network, which facilitates development of

efficient dynamic orogramming algorithms for computing the optimal production schedule.

1. INTRODUCTION

A multifacility, multiproduct production and inventory problem has been analyzed in Zangwill
(2), where the individual facilities are linked together to form an acyclic network. In the
network, each facility can receive inputs from either raw materials or lower numbered facilities,
but cannot receive inputs from itself or higher numbered facilities, Similarly, each facility can
supply only higher numbered facilities or market requirements for its own product, so that the
product in each facility can be different. The first facility receives raw materials only and the
last facility supplies market requirements only,

Assuming that the joint production costs among facilities and each inventory cost are piecewise
concave, Zangwill (2] characterized the dominant set composed of production schedules satisfying
exact requirements. It was shown that a production schedule contained in the set is optimal,
which minimizes the total piecewise concave cost function. Even if the concept of piecewise
concavity proved to be quite general, he developed efficient algorithms for only two special
models; one for a parallel system, each facility of which supplies only market requirements and
no other facilities, and the other one for a series system, where each facility supplies no market
requirements and no facilities other than its immediately following one, so that only the last
facility supplies market requirements. In the latter case, Zangwill (3) has applied the concept
of concave cost network analysis to an efficient dynamic programming algorithm development
for finding the optimal production shcedule in all echelons,
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In this paper, a multiproduct, multifacility production model is considered that is essentially
for a series system of two facilities. The first facility can receive inputs from raw material
only, but produce two different items: one for the last facility and the other one for its own
market requirements, where in each period the respective production volumes are in the ratio
of 8 to @, The last facility can receive inputs from the first facility and supply the market
requirements only. As an example, an oil refinery system can be taken into account, which
produces two different items, say gasoline and the remaindar. Gasoline may be required for
automobiles, but the remainder may be required for the further processing to produce some fine
chemicals. It is assumed that the two different products have the market requirements of a
to @8 ratio in each period. Furthermore, a FIFO issuing policy is assumed.

2. THE MODEL FORMULATION

Let #i;, 7:;20, be the market requirements for facility 's product in period 4, (j=1, 25 i=
1, 2, -, N), where N is the number of periods under consideration. For this study, 7i;i and 7,
will be called the first stage demand and the second stage demand in period i, respectively. It
is assumed that all requirements 7;; are fixed and known in advance. Furthermore, 7;; and 7;,
are required in the fixed ratio of @ to 8 in each period i. Let i, x;;=>0, be the production
completed in period i facility j and I;; the inventory at the end of period i in facility j.

Assume that no backlogging is permitted so that ;>0 for all i and j. Let I;y=1:(1) + L:1(2),
where I;;(1) and I;;(2) represent the inventory amount of stocks in pericd i at facility 1 for
the first stage demands and the second stage demands, respectively. Then, the equations relating

the production and inventory are

Ly, (D - 1) +x“*<aiﬁ> =1, (1)

Ii—l, 1(2) —111(2) +xi1* (a-?:‘ﬁ) =X ...(2)

Liy, o= Tint xi2=71, (3
i=1, 2, XN N’

where Iy, = Iy, =1Iy,=Iy,=0

Egs (1) and (2) are summarized in Ed(4),

Loy —Intxn—xn=ry @

These equations assume that production is for all practical purposes instantaneous.

Let P;;(x:;) be the cost of producing #;; units, and let H;;(L;) be the cost of holding /;; units
in stock. All costs are assumed concave on the closed interval (0, o) and P;;(0)=H;;{0)=0.
Let x;=(x1j, %, '+, %n;) be the production schedule for facility j. The vector x=(x;, %)=
(%11, 21, ***, XNy, %1z, Xzs, -+, Xnz) 1S the schedule for the entire system.

Given certain fixed nonnegative market requirements for each of the two facilities over the
next N periods, the periods, the problem is to find a production schedule X, called optimal,
which minimizes the concave cost function

POO =5, (PrsCai) +PisCri) + Hu(n (D) + Hu(n @)+ HaTi) +(3)



subject to
N N
glxil = gl["il +7:2),

Licy, i —In+xa—xn=ri,
Lty o Tt xie=ryp, (=1, 2, -, N)
Iy=lp=1Iy=1Iy,=0,
L1, Ly %z, %20, Vi,
where I;; is actually a linear function of the production vector X.
The constraints of Eq(5) can be represented as a single source network which is depicted in
Fig. 1.
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Fig. 1. The Single Source Network

3. DETERMINING AN OPTIMAL PRODUCTION SCHEDULE

Since I;; are linear in X, the feasible sets are bounded and polyhedral. They fare hence
compact and convex with a finite number of extreme points. In fact, with the multi-echelon
system represented as a network, determining the optimal production schedule for the produc-
tion system is equivalent to finding the corresponding network optimal flow., As some optimal
flow is an extreme flow, the search for an optimal flow will begin by characterizing the
extreme flows. Denote by I;;(1) andl;(2) the inventories at the end of period i (i=1, 2, -+,
N) fromthe production of facility 1 fo rthe first and the second stage requirrements, respectively.

Theorem 1.

Consider an extreme flow in the single source network. Assume that x;,(1)=a/8 x,(2) for



all i, where x;,(1) and x;,(2) represent the goods of facility 1 for the first and the second stage
requirements, respectively. Then, it holds that I;(1)=0 iff I;(2)=0 and I;;=0. Furthermore,
I (1)>0 iff either I;,(2)>0 or I;,>0.

Proof. It is known that for every period I, 7= (%—)rzz, If I;; (1) =0, it holds, under the given
assumption, that

i . [
Z ll*(a-i—ﬁ) Elfu (6)
Then, the total inventory in the system for the second stage demand is computed as follows;

1,1(2)+L»—Z k()=

= ixn— i [r11+r,1* (é)], from Egq. (6),

=1 1=1
=(.
This implies that I;(2) =0 and I;;=0, since I,(2)>0 and Ii,>0.
On the other hand, if I;;(2)=0 and I;,=0, it leads then to I;;(2)+1I;;=0, so that

éxu*( B,B) éxm' Thence, ' ()

L= élxn* (ﬁﬁ) —[z;fu

il
-

_3 B

l}; [xu*( - —B-) 'H’tz*( )] from Eg, (7),
=0.

This completes the proof for the first statement.

Now, we will show that the second statement holds. If I;;(1)>0, then

Sk (2] > 5 . —®)

Therefore,
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This means that either I,;(2)>0 or [;;>>0, since I;;(2)>0 and I;,>0, and in addition both
H;(1;,(2)) and H;,(I;;) are concave.

Finally, if either I;,(2)>>0 or I;;>>0, then it leads to I;;(2)+1,>0, so that

Sk () > - (9)

>

Therefore,

IL,(D)= {lel*( +,8) é"u}

=1



[ kg kg (9)]). s a0,

=0.
Thus, the proof is completed.

Since the network in Fig.1 has a single source, an extreme flow will have the form that
there can be at most one positive input to any node. This fact and the results of Theorem 1
will now be exploited in Theorem 2 to determine the form of an extreme flow. Theorem 2 can
be easily proved by contradiction. Points in time where the inventory level is zero will be called
“regeneration points.” It is then§noted that for every timeffperiod where production is sheduled,
the start of the period (end of the prior period) is a regeneration point.

Theorem 2,

Let the end of period m and the end of period #» be regeneration points in an extreme flow
for facility 1; that is, I,.(1)=0 and IL,,(1)=0. Then,
(a) For facility 1, the extreme flow is

n
Xmi1,1= 2, ¥, where r;=r;+r;, and so
[=m4y

Li(D= ¥ ry,m+1<t<n—1.
1=t+1

(b) For facility 2, either one of the following production schedules is an extreme flow:

n
) Zmy1,2= 2 71, and so
[T+l

L,=
1

T

lm, m+1<t<n-1,

.. n .
GI) Xmet,2=%met,2, " Emiact,2=Fmeict,zy Kmisyz= Z“ru, for a A in the range of from 2 to
l=m
n n
n-m, and so, In(2)= ¥ 7, for m+1<t<m-+2—1and L,= X 7, for m+A<t<n—1.
I=t+1 I=t+1
Under certain conditions, the given problem is equivalent to a single-product, single-facility

problem treated in Wagner and Whitin (1). Some of such conditions will be specified in
Theorem 3.

Theorem 3,

The production scheduling problem is equivalent to a singleproduct, single-facility problem
with the demands »,=7,,+ry,, if either one of the following holds:
(a) For each production set-up (x>>0) at facility 2, the set-up cost function, S;(x), satisfies
Si(x) = Hix(7in), Vi
() Hu(13())=2H. (1), Vi,

Proof.

From the second statement of Theorem 1, it follows that whenever facility 1 is due production
for the first stage demands, facility 2 should be setup for production for the second stage



demands. Furthermore, from the last statement of Theorem 1, when I;(1)>0, it is possible
to have either ;(2)>0 or I,,(2)>0. If I;(2)>0 is decided, then it will be required from
Theorem 1 that x;,=7;, or else 7;, will not be satisfied. However, by the assumption, S;(r:,)>
Hiy(ri2), so that the production of x;,=r:; can not lead to an optimal solution. Therefore, it is
necessary to have I;,>>0 rather than I;;(2)>>0 in period i.

Likewise, the second statement is sufficient to the conclusion. This completes the proof.

4. AN ALGORITHM

Along with the properties of the extreme flow discussed above, regeneration points will be
considered in formulating a dynamic programming model for an optimal solution of the problem.

Assume that the end of period m and the end of period » are regeneration points for facility
1; that is, I,,(1)=0 and I,,(1)=0. Let A.. denote the cost of producing in period m-+1 to
satisfy demands in periods m+1, m+2, -, n (m=0, 1, 2,--, N—15 a=m+1, m+2, -, N).
Ana includes inventory costs as well as production costs: Then, from Theorem 2,

n— n-1
Amn=Pm+l,l(xm+l,l) +g=§:-1H“(I“(1)) +min {Pmﬂ,Z(me-?) +‘=§HH‘2(I'2)’

my1— -1 n-1 3
min |73 Pu(r) + PassaCtmes, ) + 5. Ha(n@)+ 3 Hu(L) |}
t=im+1 t=m+1 g=m+a

2SAEn—mtt=

1

=Pm+1,1(l=§::+17’1) +t:E;+IHtl(l=it:+lr“) +min {Pm+1,z<l§+(zz) --(10)

+ nil th(l i 7’12),

t=maq B
. ma-A—1 . ”
min { > Pta(rt2)+Pm+A,2( > 7'12)
2L 21<n—mlt=m+1 J=med
n

+:n=+z;::}1u( 2 7’12)4“,‘2? th( ‘2 7’2)]},

1=t+1 =M42 I=t+1
where ri=ry+7., Vi
Let K, denote the optimal policy costs for periods 1, 2,---, #, given I;(1)=0. Then,
F,= min (Fp+An,), n=1, 2,--, N, where F,=0. < (11)

0<m=<n—1
Similarly, an algorithm for Theorem 3 can be formulated as follows: denoting by B,, the
cost of producing in period m+1 to satisfy demands in pericds m+1, m+2, -, n(m=0, 1,--,
N—-15 n=m+1, m+2, -, N),
an=Pm+l,l(xm+l, 0 +Pm+l,2<xm+1,2)

n-1
+ t=§+l[Hu(Iu(2)) + H,y (1))
=P, <z=§+1r') +Pm+1,z(l=§+l7’tz)

+t:z;::1[Hu( i 7‘11)+th( ___%lflz)], ---(12)

I1=t+1



and hence the optimal policy costs R, for periods 1, 2, -+, n, given I,;(1) =0, is

R.,= min [(Ra+Bum.), n=1, -+, N, where R=0. - (13)
0sm<n—1

Each of the recurrence telations (11) and (13) is equivalent to that of a shortest path
problem. Each relation implies that given any regeneration point n, one can find the optimal
last time point prior to #, say m*(n), when the inventory is to be zero. Therefore, by starting
with #=N and working backward, one can identify the regeneration points in the optimal
solution,

5. AN EXAMPLE

Production is to be planned for a three-period horizon. There is no initial inventory and the
final inventory level is to be zero. No backloggings (shortages) are permitted. Production and
inventory costs have the following forms:

() = {sit e, if 2420,
P"(””)’{o , othe;wise,

e N [zt dix, i 2,0,
P‘z(x”)—{o s othei’wise,

Hy (In (D) =l (1),
H; (5iy(2))=8:14(2), and
H;,(Iiy) = 9;11,.
Cost parameters and demands are given in Table 1 :
Table 1. Ilustrative Data

Demands and Parameters Penod' 1 l 2 ' 3
rir 4 2 6
Fi2 6 | 3 9
hy 30 ‘ 20 40
& 30 i 10 20
Vi 20 | 30 10
S
di E 8 6
S g 30 | 20 40
2 ! 30 g 20 10

Then, the calculations begin with »=1 and FEgs.(10) and (11) are to be used. When n=1:
Ap1=Py;(r) + Py, (r1,) =80+ 72=152, and the solution is x,*=10 and x;,*=6. When n=2:
Age =Py (r1+72) + Hiy(r21)
+min{P,(r12+722) + Hi2(722), P12(712) +Poa(r22) + Hin(720)}
=165+ min {153, 206} =318, and the solution is x;;*=15 and x,,*=9;
A1 =Py (r:) + Py (r22) =40+ 44=84, and the solution is x,,*=5 and x,,*=3. When n=3:
Aps =Py (ri+7,+7) + Hu(ra+7s) + Hu (1)
+min{Poy (712 720+ 735) + Hip (722 +722) + Hpp (732,
Min (P, (712) + Poy (22 +735) + Hyy (Poz+732) + Hpo (732,
P1o(r10) + Poy(#22) + Pip(730) + Huy (22 + 722) + Hy (732) )}

__421__



=540+ min {674, min(818, 630} =1170,
and the solution is x;,*=30, x,*=6, x,,*=3,
and x3,*=9;
Aps=Pyy (ro+r) + Hy(73) +min{Poe (725 +7355) + Hyo(730),
Py (#20) +Psy(#52) + Hyy (732))
=920+ min {386, 378} =598, and the solution is x;*=20, x.*=3, and x,,*=9;
Azy=Psy(r3) + Py (r3) =130 +64=194, and the solution is #;*=15 and x3,*=9,
These A, values are now used for computing F, in Eq.(11) :
Fi=Fy+ 4,,=152,
Fy,=min(Fo+ Aps, F,+ A;,) =min(318, 236) =236, and
s=min(Fy+ Ags, F1+ A, Fo+ Ay) =min(1170, 750, 430) =430.
Thus, the solution of the problem is

x1:.*=10, xn*=5, x5,¥*=15, %,¥=6, x,,*=3, and x;,*=9.
6. CONCLUSION

Theorem 1 can be directly extended to a multifacility problem with an interrelated demand
ratio, say “a to 8” ratio; that is, 7, :7p=a:f for v=u+1(u=1, 2, ---), where », and 7w
represent the demands in facility » and facility », respectively. Accordingly, the algorithms
suggested can be easily adjusted.
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