Testing Hypothesis for the Logistic Model with Estimated Parameters : Modified Tables of Cirticla Values for K-S Type Statistic

  • Hwang, Chung-Sun (Department of Computer Science, Korea University, Seoul 132)
  • Published : 1984.06.01

Abstract

This paper considers one-sample and two-sample test for the logistic function by means of Kolmororov-Smirnov type statistics. The standard tables used for the Kolmogorov-Smirnov test are valid only when the function is completely specified; but they are not valid if the parameters of function are estimated from the sample. This note presents modified tables for the Kolmogorov-Sminov type staistic. These tables can be used to test the hypothesis that a sample comes from a logistic function when shape parameter $(\alpha)$ and location parameter $(\beta)$ must be estimated from the sample by the method of maximum likelihood. Monte Carlo method is employed to calculate the criticla values of the test. The tables of the critical values are provided.

Keywords

References

  1. J. Amer. Statist. Assoc. v.47 Numerical Tabulation of the Distribution of Kolmogorov's Statistic for Finite Sample Size Birnbaum, Z.W.
  2. J. Amer. Statist. Assoc. v.62 On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown Lillifors, H.
  3. J. Amer. Statist. Assoc. v.64 On the Kolmogorov-Smirnov Test for the Exponential Distribution with Mean Unknown Lillifors, H.
  4. J. Amer. Statist. Assoc. The Kolmogorov-Smirnov Test for Goodness of Fit Massey, F.J.
  5. Annals of Math. Stat. v.19 Table for Estimating the Goodness of Fit of Empirical Distribution Smirnov, N.