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Multi-level linear Tracking to the Reservoir System Control
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Abstract

Linear tracking problem is analytically solved with the buadratic gerformance measure. This theory has
the inherent drawbacks in application, because the tracking assumes no boundness of the control and state
vectors,

The tracking was performed to the discrete system and interrupted subject to the violation. Multi-level
tracking was intended based on the concept of the Bellman's Principle of Optimality in this paper. The
trackMng is iterated to get the desired trajectory which is not known in advance. An application was made

to real operation of 6 rervoirs over 36 monthly periods for the Han river.
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1. Introduction

Optimizing the operation of a reservior system is a multi dimensional, hard-to-solve problem. This problem
used to be handled by the operations research. However dynamic programming faces some significant diff-
iculties due to the so called curse of dimensionality, and the boundness of the state and decision variables.®#
Linear programming has difficulty to describe the dynamic characteristics of the system. Nonlinear progra-
mming such as conjugate gradient projection method is suitable to the reservoir system control. However vast
amount of efforts is required to get the matrix inverse for the projection.®” Furthermore the design of the
objective function itself is not easy in reflecting the multi-sites, multi-patterns of seasonally varied water
.demand.

This paper presents an application of the discrete linear tracking theory to the operation of the constr-
-ained reservior system.

The linear tracking theory has a great merit which can be analytically solved under the quadratic perfor-
mance measure. The inherent difficulty in this theory is that the linear regulator/ tracking problem assumes
the control and state vectors are not constrained by ny boundary, which is apparently different from the
real circumstances. This problem was herein coped with the stage-wise system of the time horizon.

Another major problem is the fact that the desired trajectory is not known in advance. This was obtained

by the recursive method.
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2. System Description

2.1 System Equation and Inequaliy Constraints
The dynamic equation of the reservior system can be expressed by Eq.(1) for the discrete axis. The
system is assumed invertible, that is, the state and control vectors are one-to-one mapping, which is the:
most common pactice in the real world.
X(h+1)=0x (k) +Tulk)--y(k) €))
where,
x(k) 1 m¢1 state vector, storage level at stage %
(k) : m<1 control vector, relelase level at stage k(m=n)
y(k) 1 121 vector representing inflows(s), diversion(d), losses(/), etc.
(y(Ry=i(k)—d (k) —1(R)- - J
¢ : n<n state transition matrix
VU :nm control transition matrix
The inequality constraints to the state and control vectors are as egs. (2) & (3).
Tnin = X (B) ZX(R) max )
where, xnin is the time-invariant inactive storage lcvel, and
% (k)mex 15 the maximum conservation pool level.

minZ U(R) £ Umax 3)

2.2 Desired Trajectory;History
The objective of the operation is to keep the control as possible to the desired patterns which are related:

to the fluctuation of the monthly-varied water demand at every demand point.
Trott and Yeh!® suggested a way to get the desired control history which is proportional to the single:
water demard ratio per month., This concept was generalized as follow;
u(k)=Wa(j) Y]
where, a(j); m-tuple vector, the ratio of water demand in month j to the yearly demand

12
[T a(i)=T7
i=1

j; the running index to indicate the calender month of the stages

W m xm diagonal matrix, the maximum firm water supplies from m-reservoirs per annum

The corresponding state trajectory to the desired control history is obtained by forward-solving variables.
in terms of the control variable such as,

20 =2(0)= SFAG-D+T3G-D) ®)

The desired trajectory and history should be known before tracking. However these are not gencrally
acquainted in quantitative term for reservoir operation. So the initial trajectory was assumed and updated”
by repeating tracking until no more improving was achieved.

Annual firm water supply from reservoir 7 is defined as the minimum water amount rated to mect the:
water demand pattern such as,

Wi=min[u:(k)8:(j)] 6
where, B(/)=1/ai(§)

3. Discrete linear tracking theory

The performance measure for the discrete system can be expressed as,

= [H N =5 (N)ITV[x(N) = 2(N)]
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N-1

%kE {{x (&) —2(R)]TQ[x (k) — 2 (k)] +uT (k) Ru(k) )

=0

+-

A1 N 2 1%
:‘fo(A)ﬂ(N)H vt X

1
k=0

{11x(k) =2k | e+ | [n(k) ]| %) (D

where, V; nxn real symmetric weighing matrix, PSD.
Q; nxn real symmetric weighing matrix, PSD.
R; mxm real symmetric weighing matrix, PD.
N, a stage integer greater than zero, scale of operation stages
V,Q and R matrices are assumed time-invariant in this work.
The Hamiltonian is defined as,

Hix(k), u(k), A(B+1]
=%l |x(R) —& (k)| lza+%l (k) ||+ AT (R+ 1) [Px (k) +Vu(k) +y(R)] (8)

The Lagrangian of the performance measure eq. (7) and the system equation (1), calculus of variation
and the first order Taylors series expansions give the transversality condition as,

%{%1 | 2N =2 (V) |1} [px(N) = AT (N (V) =0 )
And the costate equation is,
3
=g
= Q¥ (k) +OTI* (k+ 1) —Qx (k) (10)

where, *denotes the optimal

Equation (10) is the discrete version of Euler Lagrange equation and A (k) is solved backward provided
the boundary condition. [A(N) is given.]

The boundary conditionis obtained by eq. (11) for arbitrary dx (N) #8,
A¥(N)=Va¥(N)—Vx(N)-

an ox
4. Optimal control law
Under the assumption of unboundness of the control vector the optimal control is,
O R by + war 1)~ a2)
therefore,
u*(k)=—RUTA*(k+1) as)

For simplicity, the optimal denotes hereafter without the superscript* when it is not ambiguous.
Substituting #(k) in eq. (1) with eq. (13) yields,
2(h+1) =0x(k) — U R WTAk+1) +3(k) (14)
Eq. (10) and eq. (13) are the first order, linear and time-varying, nonhomogenous difference equations
which are to be solved. Suppose its solution such as,
ARy =P (kyx (k) +sk) (15)
where, P(k):nxn symmetric unknown matrix
' s(k):nx1 unknown vector
The Riccati equation, boundary condition, etc!' are as follow; _ .
P(k)=Q+@T[P 1 (k+ 1) +¥R YT ) o 5

and
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s(k)=—0™{ [P (k+1)+¥RUTIURUT—1}s(k+1) +ST[P'(k+1)

+URWUT) 1y (k) —Qx (k) a7
and P(NY=V } \
s(NY= — Vx(N) s

The final results for th eoptimal control are as follow;
u(k)=--RUTO-T[P(k) —Qx (k) — R-UTP-T[s(k) + Q7 (k)]

&F(k)xk) +gk) (19

where
F(k)=—R¥TO-T(P (k)] 20
g&)=—RUTO T[s(k) +Q7 (k)] D

Kalman gains #(k) and the command signal g(k) are precomputed and stored. The optimal control #(k)»
can be obtained by running forward equation (19) with the given intial condition x(0), This is a closed-

loop optimal discrete system.

5. Multi-level Tracking

The real environment might cause frequently violation the assumption that the state and control vectors:
satisfy their constraints in the optimal control law. Experience shows that both constraints, especially the
state constraints play an important roles even for the monthly operation in the region like Korea where the:
flow range from low to high is significantly large.

According to the concept of the Rosen’s gradient projection?® Proj.[—%) the control is changed along
the projection of the negative gradient, which is is identical to the directior’l by the optimal control law
onto the boundary of the admissible region. This can be shown in the Pontryagin’s minimum principle so
that, the unsaturated control is,

u*(k)=—RUTI*(k+1)
and, the saturated control is,

) {u‘(k), for RTWTH*(k+1)>u (k)
u —
u*(k), for R-UTi*(k+1) <u*(k)
uik)
----------- )
e . e Lkt
- RV
CTU P

Fig.1 Behaviour of optimal control

When a violation happens at stage k on the processing the tracking, the vector moves to the boundary,
and the feed-back correction is provided to keep the system equation upon necessity., When the vectors lie
in the admissible region, the linear tracking starts again in accordance with the principle of optimalty, that
is, whatever the initials are, the remaining must be an optimal with regard to the state resulting from the:

previous decision,



6. Application to the Han River in Korea
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The Han river comprises the capital city Seoul and one of the most important source to feed the Republic

of Korea. The existing reservoir system shows as Fig, 1.

The most critical years [Hall (2)] are selected as the operation period from January 1918 to December
1920, i.e., 36 stages.
The seasonal date and characteristics are tabulated in Table 1,2,
Table 1, Reservoir charateristics
Item i Hwachon l Soyang Chunchon Uiam Chongpyung Paldang
‘) ) 2 (3) @ (5) | (6)
CA(SQKM) 3,901 2,703 4,736 7,770 | 10,140 | 23,800
Xmin(MCM) 360. 4 1,000.0 89.0 41.0 \ 102.9 | 226.0
Amax(MCM) 1,018.4 2,400.0 150, 0 80.0 | 185.0 244.0
2, 569. 0% !
tmin(MCM/M)** 80. 4 70.0 90.0 110.0 | 130. 0 200. 0
Umar (MCM/M)**  20,000.0 ; 17, 000. 0 23,000.0 29, 000.0 33, 000.0 51, 000.0
*Maximum storage from Jun. thrcugh Sept.
** Assumed
Table 2. Water demand ratio by month

Month Jan. Feb. ? Mar Apr. i May Jun.

Ratio 0. 066 0. 066 E 0. 066 | 0. 089 ! 0,113 0. 105

Month Jul. Aug. ‘ Sep. ' QOct. ! Nov. v Dec.

Ratio 0. 105 0. 105 | 0. 082 0,071 [ 0. 066 0. 066
*Assumed

Y, Y,
Res. 2

Y. ———~The south {an river

Res. b

Fig.1 '+ he existing reservoir system of the Han river, Korea



42 BBk Bt

Table 3 Convergence to the optimal Firm Water Supply (MCM/Y)

Iter Hwachon Soyang Chunchon Uiam Chongpyong 1 Paldang
500.00 | 500. 00 500. 00 1000. 00 100.00 100. 00

2 1212.12 1060. 61 1363. 64 1666. 67 1969. 70 ‘ 3030. 30
3 1212.12 1060. 61 1363. 64 1666. 67 1969. 70 ‘ 3030.30

Fig.2 The optimal trajectory of the state for the Soyang Lake

7. Discussion and conclusion

1) The optimal control vector is generally determined by solving simultaneously the state and costate eg-
uations. It is therefore recognized that the optimal control history for the saturated part cannot generally
be determined by calculating the optimal control history for the unsaturated part and by allowing it to
saturated whenever the stipulated boundaries are violated [Kirk (4)].

In this work, the behavior of the costate vector subject to the violation was not fully identified but trac-
king was simplified by multi-leveling in accordance with the principle of optimality. Author is not in a
positive place to insist that the results are optimal. However this paper was aimed at demonstrating the
applicability of the algorithm on the practical point of view. Validity of the method would be verified by
further study such as the Pontriagin’'sminimum principle.

2) The boundary condition was obtained under the condition of fixed final time and final state free. In
order to get strict evalutation of the potential, the fixed terminal condition would be desired.

3) The result was tested with three different initial conditions and the identical performance was obtai-
ned. As shown in the Table 3, the linear tracking presents rapid convergence. Almost the second iteration
gives the saturated value.

4) In order to guarantee the convexity of the performance measure, the weighing matrices R,V, and @
should be symmetric nonnegative definite, that is, it makes the second variation to be positive [82]>6].
Especially R must be positive definite to provide the existence of its inversion in deriving eq. (13).
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