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Nomenclature —m—m—o—e T ; Temperature
a ; Discretization constant u,v ; Flow velocities in x and y direction
b ; Constant term in discretization coefficient %,y ; Cartesian coordinates
g ; Gravitational acceleration ; Thermal diffusivity
H ; Heat generation rate per unit volume ; Isobaric coefficient of thermal expansion
k ; Thermal conductivity ; Inclined angle
L

Nu ; Local Nusselt number, eq.(12)
Nut ; Modified local Nusselt number, eq.(18)
Nu ; Average Nusselt number, eq.(13)

; Kinematic viscosity
; General dependent variable

[+4
8
7
; Width and height of enclosure o ; Density
v
¢
] ; Stream function

? ; Pressure Subscripts

' ; Modified pressure, eq.(1) L ; Left wall

Pr ; Prandtl number R ; Right wall

q ; Local heat transfer rate per unit area B ; Bottom wall

g ; Average heat transfer rate per unit area T ; Top wall

Ra  ; Rayleigh number, (gg8/av) (L/2)* (HL?/8k) 0 ; Reference quantity

t ; Time + ; Conduction heat transfer mode

Superscripts

*

e

Member, Dept. of Mechanical Engineering Hanyang
University %
Member, Graduate School, Hanyang University — ; Average value

; Physical quantity
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1. Introduction

Thermal convection in an internally heated fluid
layer has been considered as one of the major
mechanism of nuclear reactor safety analysist%®
as well as in geophysics and astrophysics®®,
Engineering processes where there is heat generation
by a chemical reaction or a microwave heating
within the fluid are common today such as manu-
facturing processes for resin-based materials. Kulacki
and Goldstein®™ have made the first experimental
measurement of heat transfer from a layer containing
heat generation with equal boundary temperatures.
Recently transient phenomena have been reported by
Keyhani and Kulacki®.

Natural convection in inclined enclosures also has
been the subject of numerous investigations during
the past decades. Earlier work on this problem has
been presented systematically by Hart®. Recently
Staehle and Hahne'® have extended their work to
the transient natural convection.

So far, present author is not aware of any previous
study dealing with natural convection in an inclined
enclosure heated internally.. The purpose of present
work is to investigate the change of fluid motion,
the temperature distribution and the heat transfer
rate in according to inclind angle in a fluid with
internal heat generation bounded by four isothermal
walls.

For the present study, it is assumed that the fluid
of steady-laminar flow satisfies the Boussinesq equa-
tion of state. In addition, the assumption of two-
dimensional flow with the axis of the flow pattern
has been made. This assumption has been experi-
mentally verified by Ozoe et. al*? for an externally
heated square enclosure inclined at angle greater
than 10 degree from horizontal.

Since results of present work need to experimental
check-up, Pandtl number of 6.05 had been selected
while this choice corresponds to diluted salt water
which enables us to experiment. However, the effect
of Prandtl number is not expected to be significant

as shown by Jahn and Reinke"®. Because the

section of enclosure is square and the boundary
conditions of four walls are same, data are presented
for the inclined angle from horizontal to 45 degree.

2. Mathematical Formulation

The inclined square enclosure is shown schema-
tically in Fig.1l. The isothermal walls of the enclosure
maintain same uniform temperature during heat

generation within it. The temperature and velocity

Fig. 1 Schematic representation of inclned square
enclosure containing heat generation
within it

fields within the fluid are governed by the continuity
and the
energy equation. The steady-state solution could be

equation, the Navier-Stokes equations,
obtained from long-time solution using following
equation including time-dependent terms.

By defining a modified pressure p’ as

P'=P*+{po* g(1+8 Tv*)} (y*cos f+x*sin ) (1)
and using Boussinesq approximation

o*=p* {1-B(T*—-To*})} )]
The equations can be expressed in non-dimensional
form as
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In equation (1) to (6), the following dimensionless
variables have been used

x=2x%/L, y=2y*/L, (7a)
u=u*/(2v/L), v=0v*/(2v/L), (Th)
p=p'L*/(4p* v»), t=4t*v/L% 7c)
T=(T*—Ty*)/(HL?*/8k). 7d

Ra=-58 (1120 HLY/88).

In equation (7d), (HL?/8%) indicates the maximum
temperature difference which would occur in the
layer with one-dimensional purely conductive heat
transport between opposite walls. Boundary and
initial conditions on velocities and temperature are
next needed to complete the mathematical formulation
of the problem posed by equations (3) to (6), As
mentioned previously, the fluid is contained in a
rectangular domain with four walls maintained same
uniform temperature. Therefore, the thermal and
hydrodynamic boundary conditions associated with
equation (3) to (6) are,

£==0,2; u=v=T=0 (82)

3=0,2; y=v=T=0 (8b)
The layer is assumed to be at a constant tempera-
ture and motionless at f==0. Thus, the initial
conditions are, '

u(x, 3, 0=v(x,,0)=T(x, ¥, 0)=0 C))
3. Solution Procedure

Equations (4) to (6) is discretized based on the
control-volume formulation®®, The final discretiza-
tion equations have a generalized form on a grid
point P

s Pp=3Cns Pur+b (10)
where ¢ denotes the velocity or the temperature
and the subscript #nb denotes the neighbor grid points
of p. The summation is to be taken over all the
neighbors. In the present study, there are four
neighbors.

The discretization equations are solved by a finite

difference calculation procedure called SIMPLER ‘

(Semi Implicit Method for Pressure Linked Equations
Revised)®®, The main features of this method
include a power-law formulation for the combined
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convection-diffusion influence, an equation-solving
scheme that consists ‘of a block-correction method
coupled with a line-by-line procedure, and a new
algorithm for handling the interlinkage between the
momentum and continuity equations. :

A 32x32 grid was employed with a denser hodal
point spacing near the walls. The results were
determined to be grid independent by a comparison
of the solutions obtained at successively finer grids.

In order to test the precision and accuracy of the
numerical scheme of the present study, the balances
between heat transfer rates through the every walls
and heat generation rate within the fluid were
checked. The agreements were considered very good.
The largest difference in balances is less'than 1. 5%

4. Result and Discussion

Computer solutions were obtained in dimensionless

form of velocities, temperature, pressure, stream
function, local Nusselt number, and average Nusselt
number. Results are presented in the forms of the
stream line and isotherm contour plots, the distribu-
tions of local, average Nusselt number, and the

value and location of the maximum temperature.

4.1. Streamline and Isotherm Patterns
The stream function is obtained from velocity field
by evaluating the integral,

g[;:S: udy an

along constant-x lines and with ¢ =0 along the walls.
In Fig. 2 sixteen plots of streamlines are presented
5.0X10% 1.0X
10%, and 1.5X10° at each inclined angle of 0 deg.,
15 deg., 30 deg., and 45 deg.. It can be seen in

for Rayleigh number of 1,0Xx10%

inclined enclosure that the flow consists of two
counter-rotating convective rolls and the fluid moves
upward along the line paralelled with gravity which
divides the whole cross-section area approximately
half. This upward flow hits the top wall but the
hitting point gradually shifts toward the upper top
corner as the inclined angle increases. The stream-
lines at 0 deg. take on a different pattern. Owing
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to secondary counter-rotating rolls in the upper
portion, the main upward flow is blocked and divided

by two. These two streams hit the top wall so that

5
Ra=1.0 x10%  Ra=5.0 xlo? Ra=1.0 x10 Ra=1.5 x105

DO De

APOB

P4

Fig. 2 Numerical streamlines. Ra=1,0x10% 5.0X

10% 1.0x10° and 1.5x10°% ©#=0°, 15°,
30°, and 45°
Ra=1.0 x10%  Ra=s.0 x10% Ra=1.0 x10° Ra=1.5 x10°
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Fig. 3 Numerical isotherms. Ra=1.0x10% 5.0X
10% 1.0%10°% and 1.5X10°% 6=0°, 15°,

30°, and 45°,
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there exist two local maximum points of heat transfer
rate.

For the same situations as streamlines, sixteen
plots of isotherms are shown in Fig. 3. The tempera
ture difference between each isotherms are 0.128,
0.073, 0.039, and 0.026 in dimensionless value and
0.009°C, 0.026°C, 0.027°C, and 0.026°C in di-
mensional value, for instance, using water properties
for the Rayleigh number of 1.0x10% 5.0x104 1.0
x10°% and 1.5x10% respectively. When Rayleigh
number is small as 1. 0x 104, there are little influences
due to natural convection so that the conduction
mode in temperature profile prevails. Above 15 deg.
of inclined angle, as the angle increases, the tem-
perature profile near the walls are almost fixed but
the concavity of inner hotter profile becomes more
large. This means that the natural convection has
more influence upon the temperature distribution of
inner space than that of outer space.

4.2. Heat Transfer

The local and average Nusselt number is defined
using the half layer depth, L/2, as the characteristic
length dimension and the aforementioned one-dimen-
sional conductive maximum temperature, for example,

in x-direction

oT* L

ox* |jwall’ 2 aT |
Nu=——tgresey = ox |wall, 12
— 1 2 .
Nu= —Z—SONu dx as)

In y-direction, dx or dx is replaced with 8y or dy.
There are four kinds of Nu called Nuw, Nugr, Nus,
and Nur corresponding to the left, right, bottom,
and top wall respectively. These subscripts are also
used to differentiate from each ANm. Actual heat
transfer rate per unit area at each wall can be

written as
g=HL Nu/4, Q7))
g=HL Nu/4. 15

Considering the heat balance, we can easily expect
that the sum of ¥z on each wall must be 4. This
fact was applied to ckeck the accuracy of our
results, as aforementioned.

Several plots of Nu distribution along each wall
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Fig. 4 Nu distributions of each wall. Re=1.0
x10%, 6=15°

are given in Fig. 4 at Rayleigh number of 1.0x10°
and a inclined angle of 15 deg.. The values are
compared with the situation of conduction only mode
in heat transfer. Along the top wall, Nur is higher
than that of conduction. On the other hand, this
state becomes reverse along the bottom wall. The
values along the left and right wall are partially

higher than those of conduction mode. These

phenomena are caused by the fact that the hotter .

portion of fluid moves up due to buoyance.

The two local-maximum values on Nur can be
seen in Fig. 4, which are caused by the flow pattern
that would include the characteristics of the flow
pattern within the horizontal enclosure. For inclined
angle of 15 deg. at every Rayleigh number employed

here, this two-local-maximum seems to remain.

O :Left Wall «- Ra=1.0x10% J
O : Right ceee =50 x10% 4
D : Bottom ——  =10x10% ]
a:Top —  =15x10° |
0 e S
o 15° 30 45°

<]

Fig. 5 Effect of inclined angle on N# of each
wall for various Rayleigh numbers.

The variations of N with inclined angle and
Rayleigh number are shown in Fig. 5. The line of
Nu=1 which corresponds to that of conduction mode

only in heat transfer was drawn for comparison
between convection and conduction. For the every
Rayleigh number employed here, as the inclined
angle increases from 15 deg., the magnitude of Nu
increases on the right and bottom walls but decreases
on the left wall and keeps almost constant on the
top wall. and as the Rayleigh number increases, on
the top and right walls this value increases with
Nwu>1, on the contrary, on the bottom and left
walls this value decreases with Nu<1. At 0 deg.
of inclined angle the magnitude of ‘Nur shows some-
what different results. The value of Nur at Ra=
1.0X10° is the highest one and the value of Nur at
Ra=1.5%10° is lower than that at Ra=1.0x10%
This is presumely caused by complexity of flow
pattern near the upper portion of symmetric line of
the enclosure. However, the continuous investigation
will be needed for this region further.

A comparison, in local heat transfer rate between
that would occurs with convective flow and that
would occurs with conduction only, is useful way
to investigate the influences of natural convection.
The conductive heat transfer rate per unit area at
the top wall is determined as

_ 4HL = sin{(2n+-Drx/2]tank((2n+17/2]
="z X, Gnt1)? (16)

g, =1\ q.dx=HL/4 an
TN )

Since heat transfer phenomena are symmetric with
geometric center, equation(16) and (17) can be
applied to the other walls with same manner.

The ratio (g/q,) seems to be another useful
quantity for engineering application. We difine this
ratio as modified local Nusselt number, Nu*,

Nut=q/q.=(Nu-z9/ (163 sin((2n+1)7x/2]
+tank{(2n+1x/2)/(2n+1)% (18)

The quantity corresponding to modified average
Nusselt number is same as N, since

iSzNw dx=Na. (19)
2Jo "

It is worth to mention here that the Nu is related
to the absolute magnitude of heat transfer rate while
the Nut is related to the relative one to the conduc-

tive heat transfer rate. Among the computed results,
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20

Fig. 6 Nu* distributions along the right and

left walls. Ra=1.5%10°
3.0 — . . .

0 05 10 15 20
Fig. 7 Nu* distributions along the top and
bottom walls. Ra=1.5%x10°

the Nu* distributions along the each wall at Ra=
1. 5% 10% in Fig. 6 and Fig. 7. The
aforementioned behavior of the hotter portion within

are shown

the inclined enclosure can be explained by the reason
for Nur* and Nug* being greater than Nus* and
Nu,*, As the inclined angle increases, Nuz* becomes
large near the right wall and Nu.* becomes small
near the top wall but Nuz* and Nur* keep almost
same near the top wall and right wall respectively.

To investigate the Nu* variation with Rayleigh
20 v . "

Ra :1.0x10%
50x104

10 15 20
x ory

Fig. 8 - Effect of Rayleigh number on Nu.* or
Nu5+

0 05

number, inclined angle of 45 deg. is selected as
typical example, see Fig. 8. As the Rayleigh number
increases, the Nup*(=Nus*) decreases at the lower
half portion of the enclosure but increases at the
upper half portion of it. This means that the stronger
convective flow within the inclined enclosure makes
the steeper change in the heat transfer rate along
the wall.

4.3. Maximum Temperature

The shift in position of maximum temperature
and the value of it in the enclosure are additional
interesting matter of present investigation. The
relative value of this maximum temperature to that
of which may occur in conduction only mode are
given in Table 1. These relative values are always
less than 1 and decrease as the Rayleigh number
increases. Since the stronger convection gives the
higher heat transfer rate through the walls, the
temperature in the region of the hot fluid would
decrease.

The positions of maximum temperature also can
be seen’in the contours of isotherms as shown in
Fig. 2. at horizontal
enclosure, there are two locations which drift apart

Because of the symmetry,

each other as the Rayleigh number increases. When
the enclosure is inclined this position locates at x*/
L=0.75 and y*/L=0.75 at Ra=1.0x10* regardiess,
the angles. This position moves toward the upper
top corner and reaches x*/L=0.85 and y*/L=0.85
at Ra=1.5x10%
isotherm patterns, this location seems to be a final

By the through observation of

location regardless of futher increase of Rayleigh

number.

Table 1 The ratio of maximum temperature
in convection to that in conduction
mode only

Ra 0=0° 0=15° 0=30° 0=45°
1.0Xx10* 0.646 0. 654 0. 661 0. 6€0

5.0x10*  0.49 0. 499 0. 497 0. 497

1.0X10° 0.393 0.439 0. 436 0.436

1.5x10°  0.401 0. 404 0.399 0. 397
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5. Concluding Remarks

The problem of natural convection in an inclined
square enclosure containing internal energy sources
has been solved by a SIMPLER procedure.

The results indicate that the fluid moves upward
along the line paralelled to gravity which divides
the whole cross-section area half in case of =0
deg. and 45 deg. but the direction of flow curve
toward the top and bottom corner in case of =15
deg. and 30 deg.. While the fluid moves downward
along the side cold walls. In case of horizontal
enclosure, the upward flow is blocked by the
existance of secondary counter-rotating rolls before
it hits the top wall.

The natural convection has more influence upon
the temperature distribution of inner space than that
of outer space. By the presence of natural convection
within the inclined enclosure the average heat transf-
er rates on the top and right wall are higher than
those of conduction only mode. On the contrary this
situation becomes reverse on the bottom and left walls.

At the inclined angles of 0 deg. and 15 deg.,
there are two local maximums in the distribution of
local heat transfer rate along the top wall. As the
enclosure inclined from 'horizontal the flow-pattern
has already changed before 15 deg. of inclined angle,
but the trend in distribution of heat transfer rate
still remains till this angle of inclination.

The maximum temperature occurs near the u pper
Above 15
deg. of inclined angle, it is believed that the positicn

top corner within the inclined enclosure.

of maximum temperature still locates at x¥/L=0. 85
and y*/L=0.85 even though in case of considerably
high Rayleigh number.
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