A Sapogenin of Randia siamensis

Won Sick Woo, Jae Sue Choi and Phichai Tovivich*

Natural Products Research Institute, Seoul National University, Seoul 110, Korea * and Department of Chemistry, Faculty of Sciences, Chulalongkorn University, Bangkok, Thailand (Received 29 March 1984)

Abstract \square From the roots of *Randia siamensis* (Rubiaceae), 3β , 30-dihydroxy-urs-12-en-78-oic acid (30-hydroxy ursolic acid) was isolated and characterized by spectral data.

Keywords Randia siamensis, Rubiaceae, 30-hydroxyursolic acid, ¹³C NMR.

In the previous paper¹⁾ the isolation of p-mannitol, sterol mixture, oleanolic acid acetate, oleanolic acid- $3-\alpha-\mu$ -arabinoside and mesembry-anthemoidigenic acid as a sapogenin from the roots of *Randia siamensis* (Rubiaceae) was reported. In a course of continuous work on the plant, another sapogenin was isolated from the hydrolysate of butanol soluble fraction of methanol extract.

The sapogenin, mp $282-3^{\circ}$, $(\alpha)_{24}^{D}+56^{\circ}$ (c= 1.0, EtOH) showed positive Liebermann-Burchard test and strong absorption bands at 3400 (OH) and 1685cm^{-1} (acid) in its IR spectrum. Methyation with CH_2N_2 of the compound and subsequent acetylation with Ac_2O and pyridine gave a methylester (II), mp $197-8^{\circ}$ and a methylester diacetate (III), $176-8^{\circ}$, respectively.

The MS spectrum of the compound (I) showed a molecular ion at m/z 472 and fragment ions at m/z 264 and 207, suggesting that it is a compound having Δ^{12} -oleanene or Δ^{12} -ursene skeleton with one hydroxyl group and one carboxyl group at rings D and E and one hydroxyl group at rings A and B.²⁾

The NMR spectrum of the methylester dia-

cetate (III) showed five tertiary methyl signals at δ 0.75(3H), 0.86(6H), 0.95(3H), 1.06(3H), one secondary methyl signal at 0.91(3H, d, J=7.2Hz), two acetyl signals at 2.04(6H), one carbomethoxyl signal at 3.61(3H), a doublet centered at 2.25(1H, J=11Hz) assignable to allylic 18β -proton of ursene series^{3,4)}, a double doublet centered at 4.5(1H, J=8 and 10Hz) due to H-3 and a multiplet centered at 5.26(1H) due to H-12.

The signals for the non-equivalent methylene protons further coupled with an adjacent proton appeared at δ 3.96(1H, dd, J=6.6 and 10Hz) and 4.18(1H, dd, J=1.6 and 10Hz), indicating

Table I: Carbon 13 chemical shifts (δ_c) of methyl 30-hydroxyursolate acetate (III) and related compounds in $CDCl_3$.

Carbon	Ш	N _a)	V _{P)}	VI
C-1	38. 5	38. 3	38. 1	38. 3
C-2	23.7	23.6	23. 4	23. 5
C -3	81.0	80.7	80.7	80.9
C-4	37.8	37.6	37.7	37.8
C -5	55.5	55.3	55. 2	55. 5
C-6	18.4	18.1	18.2	18.3
C-7	33.1	32.8	32.6	32.8
C-8	39.8	39.5	39.3	39. 5
C-9	47.7	47.4	47.5	47.7
C-10	37.0	36.8	36. 9	37.0
C-11	23. 5	23.2	23. 4	23.2
C-12	126.4	125.4	122.7	122.9
C -13	137.8	138.0	142.9	143.3
C-14	42.2	41.9	41.4	41.7
C-15	29.8	28.1	27.5	27.7
C-16	24.4	24.2	23.4	23.5
C-17	48.0	48.0	46.4	46.9
C -18	52.9	52.8	40.7	40.5
C -19	34.1	38.9	41.4	40.3
C-20	43.5	38. 9	33.7	34. 4
C-21	25. 1	30.7	29. 3 ^{c)}	28.7^{d}
C -22	36.2	36.6	31.7°	31.4 ^{d)}
C -23	28. 2	28. 1	28.0	28.1
C -24	16.8	16.9	16.7	16.7 ^{e)}
C -25	15.6	15.5	15.4	15.4
C-26	16.8	16.9	16.7	16. 9 ^{e)}
C-27	21.1	23.6	25.9	25.9
C –28	177.5	177.6	177. 4	177.8
C-29	17.0	17.1	27.8	74.6
C -30	67. 7	21.2	67.7	19.3
CO_2Me	51.5	51.3	50.2	51.5
COMe	21.2	21.2	21.2	21.2
	20.9		20.9	20.8
COMe	171.1	170.5	170. 9	171.0
	170.8		170.6	170.8

a, b: Data taken from ref. 5 and 6, respectively,

that CH₂OAc was not attached to C-17 but to C-19 or C-20. Therefore the presence of C-28 carboxyl group was suggested. On the basis of the above data, the compound is supposed to be 29(or 30)-hydroxyursolic acid.

Finally, the point of attachment of the primary alcohol group was established by ¹³C-NMR data. The ¹³C chemical shifts of the methylacetate (III) are given in Table together with those of methylursolate acetate (IV)⁵⁾, methylgueretaroate acetate (V)⁶⁾ and methyl mesembryanthemoidigenate acetate (VI). The ¹³C signals of III and VI were assigned by means of attached proton test experiment⁷⁾ and by comparison of δ values with these of the compounds included in Table I.

Making a comparison between the spectra of III and IV, considerably large differences in the chemical shifts were discernible for C-19 (-4.8 ppm), C-20(+4.6 ppm), C-21(-5.6 ppm), and C-30(+46.5 ppm). Such differences clearly show the presence of the primary alcohol at C-20.

Unexpectedly, C-15 was deshielded by 1,7ppm and C-27 shielded by 2.5ppm in III compared to IV. These differences can be explained by the conformational change in the E ring caused by the spatially close proximity of the acetoxyl methyl group at C-30 to C-15 and C-27, which is accordingly accompanied with that in the D ring.

In the spectrum of III, as expected⁴⁾, carbon signals for C-13, C-19, C-21 and C-27 appeared at higher fields and those for C-12, C-17, C-18, C-20 and C-22 appeared at lower fields as compared with those of oleanene isomers, V and VI.

Therefore, the sapogenin is 3β , 30-dihydroxy-urs-12-en-28-oic acid (rubifolic acid), previously known only from *Rubia cordifolia*.⁸⁾

c, d, e: Assignments may be reversed.

A direct comparison (mmp, co-TLC and MS) with an authentic sample kindly supplied by Dr. B. Talapatra of University College of Science, Calcutta, India, confirmed the identity of these two terpenoids.

EXPERIMENTAL METHODS

The mps were taken on a Mitamura-Riken apparatus and are uncorrected. The IR spectra were determined in KBr tablets on a Perkin-Elmer Model 281–283 IR spectrometer. $^1\text{H-NMR}$ (80MHz) and $^1\text{3}\text{C-NMR}$ (20MHz) were recorded with a Varian FT–80A in CDCl₃ containing TMS as an internal standard, and chemical shifts are given as $\delta(\text{ppm})$. Mass spectra were obtained with a Hewlett Packard Model 5985B GC/MS spectrometer. Optical rotations were measured on a Rudolph Autopol® III automatic polarimeter.

Isolation of Sapogenin (I)

The roots of Randia siamensis were extracted with hot MeOH. The MeOH extract was partitioned with hexane, CHCl₃, ethylacetate and BuOH sucessively. The BuOH soluble portion was hydrolyzed with 5% H2SO4 for 5 hr. After cooling, the precipitate was filtered, washed with water and dried to give a brown solid, which was chromatographed over SiO₂ column eluting with benzene: ether (4:1) to give I as colorless prisms from CHCl₃-MeOH. mp 282- 3° , $[\alpha]_{0}^{24}+56^{\circ}(c=1,0, EtOH)$; LB: positive $IR\nu_{max}^{KBr} cm^{-1}$: 3400(OH), 1685(acid); MS m/z (rel. int.) $472(M)^+(1.9)$, $454(M-H_2O)^+(0.7)$, $264[D/E \text{ ring}]^+(100), \quad 246[264 -H_2O]^+(10),$ $233[264 - CH_2OH]^+(14), 207[A/B ring]^+(93.7),$ $201(246 - CO_2)^+(76.9), 189(207 - H_2O)^+(14.8).$ Methylation of I

A sample (30mg) of I was esterified when dissolved in MeOH and treated with CH₂N₂.

The product was crystallized from MeOH as colorless needles, mp $197-8^{\circ}$, $IR\nu_{max}^{KBr}$ cm⁻¹ 1725(ester); MS m/z(rel. int.) $486[M]^{+}(2.5)$, $455[M-CH_{2}OH]^{+}(0.7)$, $426[M-(COOCH_{3}+H)]^{+}(1.4)$, $278[D/E ring]^{+}(67.2)$, $247[D/E ring-CH_{2}OH]^{+}(15.4)$, $219[D/E ring-COOCH_{3}]^{+}(7.0)$, $201[D/E ring-(COOCH_{3}+H_{2}O)]^{+}(100)$.

Acetylation of II

A sample (20mg) of II was acetylated with Ac_2O (2ml) and pyridine (1ml) in the usual way. The reaction product was crystallized from MeOH-CHCl₃ to give colorless plates, mp 176-8°, $IR_{\nu}^{KBr}_{max}$ cm⁻¹, 1728, 1235(ester); HMR (CDCl₃) see text; CMR(CDCl₃) see Table; MS m/z(rel. int.) 570[M]+(1.2), 511[M -OAc]+(1.9), 510[M -HOAc]+(4.3), 495[M - (HOAc+CH₃)]+(1.2), 450[M -2×HOAc]+(0.3), 320[D/E ring]+(3.8), 260[320 -HOAc]+(14.4), 201[260 -COOCH₃]+(100).

LITERATURE CITED

- Lapikanon, P., Tovivich, P., Woo, W.S. and Choi, J.S.: Phytochemical study on Randia siamensis. Arch. Pharm. Res. 6, 29 (1983).
- Budzikiewicz, H., Wilson, J.M. and Djerassi, C.: Mass spectrometry in structural and stereochemical problems. XXXII. Pentacyclic triterpenes. J. Am. Chem. Soc. 85, 3688 (1963).
- Cheung, H.T. and Yan, T.C., Constituents of Dipterocarpaceae resins. IV. Triterpenes of Shorea acuminata and S. resina-nigra. Aust. J. Chem. 25, 2003 (1972).
- Seo, S., Tomita, Y. and Tori, K.: Carbon-13 NMR spectra of urs-12-enes and application to structural assignments of components of *Isodon* japonicus tissue cultures. Tetrahedron Lett. 1975, 7.
- 5) Seo, S., Tomita, Y. and Tori, K.: Biosynthesis of ursene-type triterpenes from sodium (1, 2-13C)

- acetate in tissue cultures of *Isodon japonicus* Hara and re-assignments of ¹³C nmr signals in urs-12-enes. *JCS* (Chem. Comm.) 1975, 954.
- 6) Tori, K., Seo, S., Shimaoka, A. and Tomita, Y.: Carbon-13 NMR spectra of olean-12-enes. Full signal assignments including quaternary carbon signals assigned by use of indirect ¹³C, ¹H
- spin couplings. Tetrahedron Lett. 1974, 4277.
- Patt, S.L. and Shoolery, J.N.: Attached proton test for carbon-13 NMR. J. Mag. Res. 46, 535 (1982).
- Talapatra, S.K., Sarkar, A.C., and Talapatra, B.: Two pentacylic triterpenes from *Rubia cordifolia*. *Phytochemistry* 20, 1923 (1981).