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A GENERAL METHODOLOGY FOR
ESTABLISHING OPTIMAL INSPECTION POLICY
IN A COMPLEX SYSTEM

SOUNG HIE KIM *

Abstract

This paper develops a general methodology for evalsmting inspection {mainly, safety inspection} policies, s~

tandard and regulations in a complex system with lots of .components. Based on practically available data,

this methodology enable planners and regulators to estimate the costs and effectiveness of different inspec-

tion policies when applied under different system working conditions. As main iwcls, the concepts of detec-

tion probability and earliness of detection are developed in this paper.

1. Introducti oen

In this paper we analyze an inspection program
with two tests for z single defect in = complex sy-
stem.

Onee a defect{e.g.,s crack,a melied bearing,
or an unbalance load) occurs in a system, it gets
progressivel y worse until it either causes the sy-
stem to fail, or is detected and repaired or replaced.
How far the defect has progressed from the time
of its genesis is called the stage of the defect.
The purpose of testing is to detect defects in an
early stage, before failure and at a time when re-
pair costs are low.

The history of a system is'marked by certain

everts.
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Examples are the event that a defect first develops,
the event that a test detects a defect, and the event
that the system fails. A decision point in the system
5 history at which we much choose which tests,

repairs, orf maintenance actions to perform,if any.

2. Modeling the Problem

The structure of the problem is indicated in Fi-
gure 1.In the following discussion, the letters in
parentheses refer to the events depicted in Figure
1.

Consider a system {a) in an OK state {all pre-
vicus tests have been negative), At this point,

there is the option of performing Test A(b), per-



torming Test B{c), performing routine maintenance
{d), or deing nothing (e}, Suppose the system is
given Test A. The test might result positive (f)
{indicating the possibility of a serious cfefecl), or
negative(g). If the test results positive the sys -
tem should be stopped fora more complete inspec-
tion. A positive test result may be incorrect{a
false-positive test result) (h), or the test result
may be correct, having detected & serious defect
(a true-positive test result) {i}, Such a true-po-
sitive test should be followed by repair of the com-
ponent {j), before the system is returned to work
As the system works thrdug‘n the interval, it either
fails (k} or does not fail {I), If the system recei-
ves a negative test, it also either fails {m) or does
not fail {n} during the interval before next inspec-
tion.

Suppose that instead of Test A, the system is

given Test B {¢}. "A positive test {o) indicates

(a)

{d}
Maintenance

the need for repair (p), whereas a negative test
{q) rules out the need for such service. (A false
-positive result iz also possible, but is omitted to
simplify the decision.) As before, following comp-
lete inspection and repair, the system works again
through the interval before the next inspection.In
that interval it can either fail {r) or not fail (s,
The same outcomes (t and {u), are possible for
the system that has successfully passed Test B
without a detected defect,

The system can be given routine maintenance (d)
before proceeding through the next interval. After
receiving routine maintenance, the system either
fails (v} or does not fail {w} before the next in-
spection.

A final option is that the system passes with no
tests (or services). As in the other cases, the
system either fails {x) or does not fail {y) before

the next inspection,

pefect by A,
Repaired

(¥

Fig. 1. Structure of the problem.



The structure in Figure 1 suggests a stochas-
tic model that traces the expected fate of 2 system
under various inspection policies. The structure can
be transformed into the state transition diagram in
a time-varying, state- varying discrete time Markov
chain (1}.The term state - varying is introduced
because the states of the Markov chain change s-
lightly with each transition to take into account
changes in the age and screening history of the
system. A state is denoted with the letter “ 5"
and two subscripts. The first subseript designa-
tes the system’ s condition and the second repre-
sents the time defining the system's condition. For
example, if a system at time t, is OK, the system
is in State S, g, -

Now consider the system at inspection time t,.
The system is in the State 5,.1, as shown in Fig.
2 .The transiticns out of S, t, depend on the in-

spection policy. The policy designaies whether Te-
st A, Test B, routine maintenance, or no action is
to be performed at t,. For example, if the policy
stipulates that only Test A is to be performed at
ty, then the state transition diagram becomes that
shown in Figure 2,

Suppose that at t,, the inspection policy calls
for the performance of Test B. The state tran-
sition diagram looks like Figure 3, and the tran-
sition probabilities are conditional on the current
state definitions. For example, the proi:nabi]ity of
moving from S, t, to S;, t, is the probability
that a system with previous history plus {t, -t}
age and which did not fail through the t, has a
visually observable defeet (Test B). At t,, then
the “0OK" condition S.,t. is defined to contzin sys-
tems with previous history plus {t:-t,) age, had
e negative Test A t;-t, hours ago, and & negative

Test B t.-t,

hours ago.

Fig. 2. The First Inspection.
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2.t Defoct by A,
2 Repa fred

Defect by B,
Repairad

Fig. 3. The Second Inspection Defect by A, Repaired

In this way, the structure of the model unfolds
as the calculations proceed. At each interval, the
transition probabilities are cemputed as a function
of the current state definitions, and only those s-
tate, transitions, and transition probabilities needed
to model a particular scenario are generatéd.

In order to calculzte the effect of any inspection
interval, the step size of the Markov chain can be
left as a variable that is determined by the inspec-

tion policy.
3., Basic Formulas of the Model

Many formulas are used to compute the transition
probabilities used in the medel. The letters in pa-
rentheses refer to events illustrated in Figure 1.

1} The probability that at any time Test A de-

tocts a defect {f and # in an OK system.

21 The probability that at any time Test B de-

tects a defect (o) in an OK system.
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3)

4)

5)

Each

1}
2)

A probability density function on earliness
of detection, given each way (b or ¢} that
the defect can be detected. The earliness
of detection affects the probability of failure
during the subsequent interval (k and r).
Given that Test A or Test B was negative
at the last inspection, the probability that the
system fails before next inspection {m and
), and

Given that no actions were performed, the
probability that the system will fail before
next inspection {x).

of these probabilities is a function of at lea-
st the following .

The time previously worked.

The risk of developing the defect compared
to the average .systems of the same type.
This risk may depend on such factors as

the working load, quality of routine servicing,



and so farth,
3) The interval from the last application of Test
A,
4) The interval from the last application of Test
B.
5) The aceuracy of the tests.
With these probabilities, we can obtain all the t-
ransition probabilities required to define a time-
varying, state-varying Markov model that describes

the impact of inspection policy.

Stage of Development

To derive these formulas, we define. two parame-
ters, the “A-interval”’, a, and the “B-interval”, A,
where the letters refer to the titles of the tests.
These parameters can be visualized in Figure 4,
which represents the development of a defect (for
instance, crack) in a component of a system. The
vertical and horizontal axes represent the stage
of development of the crack and the number of
age worked by the component, respectively. The

more system worked, the worse the crack.

: e—— 8 ——n
[ I
! | !
te
ta ty t
{Detectable by Test A) {Detectable by Test B) (Failure)

Fig.

Each cracked component progresses at its own
rate, Thus each component will have a particular
A-interval and a particular B-interval. In a large
group of systems, there will be a range of A-in-
tervals and B-intervals depending on the kinds of
systems, the condition of loading, the accuracy of
testing equipment, the conscientiousness of inspec-
tors, and many other factors. Thus o and £ are
random variables, Define f(a ) and g(8) as the
probability density functions,and F{ea }, G(£} as
the cumulative distributions of @ and 4 respecti-
vely.

All of the formulas needed to write the Markov
model can be derived in terms of these mtervals,
In that model we make two assumptions? (1) o

and A& are independent,and (2 ) if once a defect

-37-

4. Development of Defective Component.

is detectable by a kind of test it is always detec-
table by that kind of test. The first assumption

simpli fies the analysis and the theory can be ex-
tended to the case in which @ and 4 are depen-
dent. The second assumption is called the Progr-
ession Assamption In the cases of defects  that

as cracks, wear and tear, the Progression assump

progress continuously, such tions zppears to be a

good one.
4. Derivation

Let us derive a formula for the prabability that
at any time, Test A, if performed, discovers a defect.

The related events are defined below and diag-
rammed in Figure 5.

tn is the current time,



Next.

Last last Scheduled
Test A Test 8 Now Inspection
l |
1
é
- Ib -
3 I, -

Fig. 5. History of system.

t, is the system was last inspected using Test
A,
t, is the time the system was last inspected
using Test B.
t, is the time of the next scheduled inspection.
- A7 is the event that Test A performed at t,
was negative.
B, is the event that Test B at t, was negative.
; is the event that the system has not failed
{is OK) at time 1,.
# is the actual time the defect causes a fail-
ure in the absence of any inspections. Thus
& is a random wvariable, and corresponds
10 t, in the history of a defect {(Figure 4}
Let {0} denote the probability of event 0. Let
{A| R} denote the conditional probability of event
A, given event R, Using this notation, the probabi-
lity that Test A done now {at t,) will detect a
defect {event AJ) given that the system was not
failed {C7)} and that Test A performed at i, and
Test B done at t, are both negative [As, BY),
can be written as {A | AL, By, G, We now de-
rive a formule for this probability.
First, expand over & 1o get

i VALBL G =/ A, FIALE G

&
=§'{MI5.A;,BE.C§} {1 AL
B, G1. (1)

If we assume the Progression assumption, then

the left half of the integrand becomes

(A7 16,4, B, G =1 -F(F—1) (2}

since, given alpartit‘:ular & Test A done at t, will
be positive (A7) if and only if the A-interval is
greater than &-t,. In anthrepomorphic terms, 1-
F(d-1) is the probability that Test A can look far
enough into the future to detect a defect that will
be obvious -1, years from now.

Using Bayes’ formula we can write the second

half of Eq. {1} as

(A Br 18, Gt 101 G
& A,B,Cot = {3)
Jo 1A5, B 1 0,C0 10 G

"Consider now the first probability in the nume-
rator of Eq.(3) 1 As,Bs | 8, ¢l
want the probability that (1) Test A at ta was

Given &, we

negative {As},and (2} Test B at t, was nega-
tive, (B;). For a particular &, Test A will have
heen negative at ta if the A-interval is shorter
than 6-te. This is F{#-ta), the probability that
the A-interval is short enough so that a defect
that causes a failure at time & is not detectable
by Test A when done at ta. Also, given &, Test
B will have been negative if the B-interval is
shorter than &-t,, which occurs with probability
G{f-t,). Hence

1Az, B;l 8,Cs =F (61} G (1) {4)

Notice that the assumption that & and & are in-



dependent random variables enters here.

The probability on the right side of numerator
of Eq. (3) is the time failure occurs. The dis-
tribution for this interval depends on the type
of defect being modeled, but if we assume for this
example that over a short interval (the interval
of the Markov Chain) the time a defect causes
failure is a continuous random variable with a

constant rate of ococurrence r, then

ol = {r e o ) 5

o otherwise 3]

The rate r is an important variable that depen-
ds, for example, on the incidence of cracked com
ponents per time for z particular category of
components (defined by age, material, loads worked,
and other variables). It must be estimated from
factory statistics on failures [2] (3.

Combining Eqgs. (3}, (4), and (5}, we obtain

_ F(&“‘ta} G((?"—ta)
JLFid—a) G{6—1s)

{¥] Az, By, Cot

e—r‘(a‘to} ®
r e-r( "t T gp }

And Eq. {1) becomes .
J (1-F(3-t0)] F(o-1)

{As | AZ,B:,Cot =
J, Flo-ta) G-ty
Glo-ty)r ¢ T1E7t0) 0

(7}

. e-r(ﬁ-to) d&

The lower limit of & in the denominators of
Egs. (6) and (7) is determined by the inequality
constraint in Eq. (9).

We define two intervals I {1} I =to ~tas, the in-
terval from the time the system was last inspec-
ted {negatively) by Test A,and {2) L, =ta-1e, the
interval from the time the system was last ins-
pected {negatively} by Test B. These intervals
are shown in Figure 5. Using this notation and
by changing variables in Eq. (7}, we can write
that

A | A7, By, Cot =

fo [1=F{I)JF (I,+¢)G (I, +¢)remredg/
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The probability can be seen to be a function of

1) the rate at which defeets occur - r;

2} the interval since the last negative ins-
pection with Test A-L;

3) the interval since the last negative ins-
pection with Test B-ls;

4) the effectivenass of Tests A and B-F{q]
and G(f).

Other formulas are needed to complete the a-
nalysis. For example,if the inspection policy
called for the application of Test B instead of
Test A, then a2 formula for {BS | By, As, Cot
is the mirror image of Eq.(8), Logic similar to
that just shown can be used to derive a formula
for the chance that,if Test A is negative al to,
a defect will be discovered by Test B ({Bd | A,
By ,C5t). This is

iBd | A3, Bs, Cat =

7201-CE)) FO) GE+1) r e ™ot

(9)
FEF(E) G(E+1.) r e Foag

And if Tests A and B are both negative there
is a chance that the component will cause a fail-
ure before the next scheduled inspection at time
1, 4G | Ag, By, Got.

1C7 | As, Bs, Cot =
JIFEHL) GEtL) v e

{1 P10 G - e har

where Ia=to-ta, [s=to-ts,and I=1t;-te. By
letting either te=to,0r ts =ty,or both ta and t.
=0, we can calculate the probabilitles {C7 | As.
Bi, Cst, {Cr | Ac, Bs, Cot and {CF | AX,BS, Gt
which represent all the different inspection his-
tories that can precede a failure.

The next step is to calculate the costs and be-
nefits that arise from detecting some of the de-
fects through tests before failure. This introduces

the notion of the earliness of detection. Figure &



shows the life of a particular defect as a time
line. Markes on that line are four key points in
the life of the defect!

time it first begins to form, the first time it is

{from left to right) the

detectable by Test Bts}, the first time it is de-
tactable by Test A (ta), and the time it will ca-
use & system to fail (tc}. Suppose we performed
both Tests A and B at time points t-: and t-,,
and to (now), as shown in the figure In this case
no tests will detect the defect until the current
inspection {at te), when Test B will be positive
{since to} ts). Test A will be negative since to
{ ta. Now, the earliness of detection, which we
designate as ¢,is defined as the interval of time
between the moment a defect is actually detected

{te} and the moment it would have caused a fai-

it should be obvious that the earliness of ‘detec-
tton is a function of the effectiveness of the tests
{greater effectiveness moves . z2nd te to the
left), and the frequency ef screening {higher fre-
quencies tend to move the time of actual detection
{te} to the left). [f we define &1 as the earliness
of defects detected by Test A, 2 as the earliness
of defects detectedby Test B,and &4 as the ea-
riness of defects detected by Test B after Test
A is negative, then it can be shown that

{a | A5, A7, By, Cot =

K(F(e4Ia)—F{e}] G{e+L) r e ™ I
{ee | B3, By, Az, Cal =
K (Gle+1,) —G(e)) Fle+L) r et U2

{eas | B, A5, By, Cot =k" F(&) (Gle+1.)—
Gle)) r ™" L

lure in the absence of inspection (ts).Thus in Where k, k' and k' are normalizing constants,
this case e=te-ts.
roment 15t moment 1st moment
defect defect defect
begins detectable detectable moment defect
to flonn by Tast B by Test A fails obviously
1 1 |
| 1 T >
1
t tp t ty Tt
t - -
-2 ta o € o
previous frevious ‘mpment of
inspection inspection current
inspection

Fig. 6. History of A Defect.

Formulas can be derived for the earliness of
detection of defects detected by eny means at a
scheduled inspection with é.ny policy. Notice that
the earliness is a function of the age worked by
the component since the most recent previous in-
spections by each test (Ix and Is),as well as th
effectiveness of the tests,as enceded in F(&} and
G&.

Equations such as (8),{9) and {(lij are used to
calculate the chances that defects are detected
through inspections. And Eqs, such as (11,12 and
{13 can be used to determine how early in their
natural histories these defects are detected. Know-

ledge of the density functions for the earliness

of detection of defects detected by varicus means
is then used to calculate the future of those de-
fects. In the Markov model this is handled by c-
reating a set of earliness categories that collect
defects that have similar earlinesses of detection.
One can creste as many earliness categories as
are needed to model the problem realistically.

The last link that connects the detection of a
defect to a set of outcomes is the outcome funtion.
Here we assume that the future of a system with
a defect is a function of how early in its history
the defect was detected.

Suppose an important outcome is the failure of

a system. An outcome function will relate the p-

_40_



robability that & crack in a compenent of a size
zsuch that it will become obvious in x hours, will
cause a failurs in y hours. More than one out-
come can be analyzed by having more than one
outcome function. For example, another outcome
function can be used to relate the expected costs
of repair to the earliness with which a crack is
detected, while a third outcdme function can si -
mul tanegusly tally the probability that if unrepai-
red the defect will cause a failure in the future,
and a fourth can compute the probability of a fu-
ture failure given that the defect is repaired at

the time of detection.
§. Data Needs of the Model

In order to implement the model, it is necessary
to have specific entries for the functions that en-
ter into the formulas just described. Three kinds
of functions are required: (1) an incidence func-
tion that gives the probability that a defect causes
a failure (in the absence of inspections) as a
function of hours worked by the system .since its
last overhaul,(Z} the density functions for the test
intervals, and {3) the outcome functions.

There are many ways to estimate these func-
tions, and the best method will depend on what
data are available, what dats are coll ectible, and
what assumptions are appropriate. First, we ex-
pect that the incidence function can be estimated
from data on the frequency of failures from de-
fects in systems of various ages (i.e.,hours wor-
ked since overhaul}. It might be possible to use
accident records to obtain the rate at which de-
fects appear over a certain interval,

The second set of functions are the probability
density functiens for the test intervais. We can
not observe these intervals directly, but they can
be estimated from information about the propor-
tion of defects detected by various methods (i.e.,
by various combinations of tests or through failure)
in an experimentally scheduled inspection program.
(for example, see Appendix For example, it
may be possible to observe an experimental ins-
pection program in which Tests Aand B are per-

formed every 100 hours on components with known

defects. Then the proportions of defects revealed
by Test A alone, by Test B alone, by both tests,
and through failure, can be used to estimate the
distributions on the two test intervals.

The estimation procedure is quite simple in con-
cept: assume functional forms for the density
function, then design or cbserve an experiment,
write formulas that predict the outcomes of the
experiment, and fit the parameters of the assumed
functions to minimize the squared difference bet-
ween the observed and predicted values. After
the estimation procedure, it is necessary to test
the closeness of the experimental frequencies to
the theoretical frequencies, using the x* tesc

The third set of functions is used to predict the
cutcomes associated with detecting defects by va-
ricus methods before they cause a failure. These
functions can be estimated by observing the out-
comes that occur when each defect is detected by
a particular methed. We have seen that the way
that a defect is detected (by a particular test or
combination of tests, given a particular inspection
history), implies a particular earliness of detec-
tion, which in turn implies & different outcome.
For example, the cost of repairing s cracked com-
ponent detected by one test may be less than that
of a cracked component detected by ancther ins-
pection if the former test can detlect some cracks
before they bacome obvious on latter inspection.
The first component may only need trueing; the
second may need to be replaced. To estimate the
outcome functions records on the outcomes and
costs associated with failures, accident reports,
and maintenance records from the corresponding

companies can be studied.
6. Conclusions

For any combination of operating conditions and
inspection policies the model can calculate the
chance that one or more defects will be detected
at an inspection, the earliness with which a defect
is detected, the outcomes {e.g.,probability of failure,
cost of repair) associated with detecting a defect,
and the cost of inspections.

This general methodology can be appiied to a



wide variety of inspection problems such as the ins-
pection of airplane, nuclear reactor, railcar, bridge
and pipelines.
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Appendix
An linear Approximete method of deriving pro-
bahility distribution of the failure interval from
small discrete data.
Let » be the failure interval between the detec-
table time, ty, and the failure time, te, that is,
T=tc-tp,
At any relevent time, ta, the critical crack sizes

are considerably different, as shown in Figure A, 1.

D
(Detectab‘l/
Size)

Fig. 1.

Time

Figure A.1. The growths of cracks

//. S

-
r

time

Figure A. 2.

Crack growths at the detectable time.
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In Figure A. 1, assume that detectable size only
depends on insf)ec_tion method, in other words, &
has a constant value. The critical size, however,
depends on the various internal and external e-
ffects of the corresponding component. That is, ac
has some probability distribution, {ac}.
Redraw the previous figure as Figure A. 2.
In what follows, we confine our ourselves to study "
of linear growth. The general case of linear grow-
th is

a(t =at,

Where & (growth coefficient) is independent
random variable.

We assume that ¢ and crack size difference, M,
between ac and ap follow normal distribution
respectively. Then,a(t] has & normal distribution
with the fo- llowing parameters.

Man =g~ t @dy, =0oht?,
And the survival probability is
{) m = {axzM} = {an- M= O}

Where 7 is a life time.

Therefore, the failure probability is

lt{ t=1-{tzn=1-{ar-M= O}
Let y{m) =ar-M
then, #= Ha Tt Gl=gtm +af

then, the failure probability is

( ) At
— [(Ugm— Uy oy e
(T<B =1 = @ (= 1 — 0 )
Ta?l + o
th

e
g (L
n (A. 1)
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where ${+) is culmulative siandized normal
dist’n,

The above dist'n involves three parameters;

_% _a e
a=-5, b g ¢ o {A. 2)

Then, the dist’n takes the form

(1 - i)

Based on the derived result, we can estimate the
parameters of the distribution as follows

1) Choose time points &4, % and @ such that
and count the number of failures
for j=1, 2

2, 3. Denote these numbers as m{m).
_m(m)

N

m{m{m

that lie in the in tervals (O, =)

Calculate the ratios 7{m) where N
is the total number of cracks.
Find the values &;' =®~' (y{m)), where

@' (-) is inverse P{ -} distribuation,

2)

31 Use the method of successive approximaticns
or a graphical method to solve the equstion.
[ i «/F‘ +1 - G;‘-/-%,:H 1
BomOCVER F 1 SRR T
in order to obtain %_

4) From the known ratio i—xd, find
_am{m—c)—m{m—c O mv dm 1—

(m—a) — {m —c) o;'vdg + 1 —
P mydait ]
B d i 1
5) Determine parpmeters b and a in Equation

{A. 2] by using the following expression.

_rH—c _
b= 2



