GENERALIZED ASCENDING CHAINS AND FORMAL POWER SERIES RINGS

By Lovis Dale

1. Introduction

Generalized ascending chains of ideals arise naturally in polynomial rings in several variables. By using such ideals we were able to prove the Hilbert basis theorem for a polynomial ring in several variables without using the asual method of extending variables. In this paper we will prove a similar result for a formal power series ring in several variables. This will be done by using a modification of the argument used to prove the theorem for a polynomial ring in several variables.

Let P be the set of non-negative integers and P^{x} the product of $P n$-times. If $\alpha=\left(i_{1}, \cdots, i_{n}\right), \beta=\left(j_{1}, \cdots, j_{n}\right) \in P^{n}$. then we will say that
(i) $\alpha=\beta$ if $i_{k}=j_{k}$ for each $k \in\{1,2, \cdots, n\}$; and
(ii) $\alpha<\beta$ if $i_{k}<j_{k}$ for some $k \in\{1,2, \cdots, n\}$ and

$$
i_{t} \leq j_{t} \text { for all } t \neq k
$$

If either $\alpha=\beta$ or $\alpha<\beta$, then we will say that $\alpha \leq \beta$. We define the sun of α and β to be $\alpha+\beta=\left(i_{1}+j_{1}, \cdots, i_{n}+j_{n}\right)$.
1.1. DEFINITION. A collection of idcals $\left\{A_{\alpha} \mid \alpha \in P^{n}\right\}$ in a ring R will be called a generalized ascending chain of dimension n if whenever A_{α} and A_{β} are two ideals in the collection with $\alpha \leq \beta$, then $A_{x} \subseteq A_{;}$. The generalized ascending chain of ideals $\left\{A_{\alpha} \mid \alpha \in P^{n}\right\}$ is called finite if there is a $\Delta=(N, N, \cdots, N) \in P^{n}$ such that for each $\alpha=\left(i_{1}, i_{2}, \cdots, i_{n}\right) \in P^{n}$ with $\max _{\kappa} i_{R} \geq N$ we have $A_{\alpha}=A_{\beta}$ for some $\beta \leq \triangle$. If we consider the elements of P^{n} to be lattice points, then to say that $\left\{A_{\alpha} \mid \alpha \in P^{n}\right\}$ is finite means that there is an n-dimensional cube C_{N} of length N such that for any $\alpha \in P_{n}$ and $\alpha \notin C_{N}$ there is a $\beta \in C_{N}$ with $A_{\alpha}=A_{\beta}$.

It was proved in [1] that if R is a Noetherian ring, then every generalized chain of ideals in R is finite. If $R_{1}, R_{1}, \cdots, R_{n}$ are rings, then gencralized ascending chains arise naturally in the direct sum $R=R_{1} \oplus R_{2} \oplus \cdots \oplus R_{n^{\prime}}$. It is
easy to show that every generalized ascending chain in R is finite if and only if every generalized ascending chain in each R_{i} is finite.

2. Power series rings in several variables.

Let R be a commutative ring with an identity and $R\left[\left[x_{1}, x_{2}, \cdots, x_{n}\right]\right]$ the formal power series ring in the indeterminates $x_{1}, x_{2}, \cdots, x_{n}$. An element in $R\left[\left[x_{1}, x_{2}, \cdots, x_{n}\right]\right]$ is of the form $f=\Sigma a_{i_{1} \cdots i_{n}} x_{k}^{i_{1}} \cdots x_{n}^{i_{n}}$ with each i_{k} being unrestricted. The coefficients of f are also unrestricted. Let $\alpha=\left(i_{1}, i_{2}, \cdots, i_{n}\right),|\alpha|=i_{1}$
 may be written $f=\Sigma a_{\alpha} X^{\alpha}$ with $|\alpha| \rightarrow \infty$. The degree of a non-zero term $a_{\alpha} X^{\alpha}$ of f is $|\alpha|$. Now for each α with $|\alpha|=m, f$ may contain more than one term of degree m. If f_{m} is the sum of all terms of f of degree m, then clearly f_{m} is a homogeneous polynomial. Consequently, we can write $f=\sum_{0}^{\infty} f_{m}$, where f_{m} is a homogeneous polynomial of degree m. Thus each non-zero polynomial f contains a homogeneous polynomial of lowest degree. For each polyonmial f_{m} we consider the lexicographic ordering for the terms of f_{m}, i. e., if $a_{\alpha} X^{\alpha}$ and $a_{\tau} X^{\tau}$ are terms of f_{m} with $\alpha=\left(i_{1}, i_{2}, \cdots, i_{n}\right)$ and $\tau=\left(t_{1}, t_{2}, \cdots, t_{n}\right)$ such that $i_{1}=t_{1}, i_{2}=t_{2}, \cdots, i_{s}=t_{s}$ but $i_{s+1}>t_{s+1}(s \geq 0)$, then we say that $a_{\alpha} X^{\alpha}$ is higher than $a_{\tau} X^{\tau}$ or $a_{\tau} X^{\tau}$ is lower than $a_{\alpha} X^{\alpha}$. It is clear that f_{m} can have only one lowest term. Consequently, the polynomial f can have only one lowest term of lowest degree. We will call such a term the lowest term of f. Now if H is an ideal in $R\left[\left[x_{1}, x_{2}, \cdots, x_{1}\right]\right.$, let
$H_{\alpha}=\left\{b \in R \mid b=0\right.$ or $b X^{\alpha}$ is the lowest term of some $\left.f \in H\right\}$.
2.1. LEMMA. If H is an ideal in $R\left[\left[x_{1}, x_{2}, \cdots, x_{n}\right]\right]$, then $\left\{H_{\alpha} \mid \alpha \in P^{n}\right\}$ is a generalized ascending chain of ideals in R.

PROOF. If $a, b \in H_{\alpha}$ and $r \in R$, then $a-b$ and $r a$ are elements in H_{α} as one sees by taking the difference of the corresponding polynomials and r times. the corresponding polynomial. Consequently, each H_{α} is an ideal. Now let. $0 \neq b \in H_{\alpha}$ and $\beta \in P^{n}$ such that $\alpha<\beta$. If $\alpha=\left(i_{1}, i_{2}, \cdots, i_{n}\right)$ and $\beta=\left(j_{1}, j_{2}, \cdots\right.$, $\left.j_{n}\right)$ then $j_{k}=i_{k}+t_{k}$ for some $t_{k} \geq 0$. Let $\tau=\left(t_{1}, t_{2}, \cdots, t_{n}\right)$ and f be a polynomial in H with $b x^{\alpha}$ as lowest term. Then $X^{\top} b X^{\alpha}=b X^{t+\alpha}=b X^{\beta}$ is the lowest term.
of the polynomial $x f$. Consequently, $b \in H_{\beta}$ and it follows that $H_{\alpha} \subseteq H_{\beta}$. Therefore $\left\{H_{\alpha} \mid \alpha \in P^{n}\right\}$ is a generalized ascending chain of ideals in R. The idcals $\left\{H_{\alpha} \mid \alpha \in P^{n}\right\}$ will be called the lowest coefficient ideals of H.
2.2. THEOREM. If R is a Noetherian ring, then $R\left[\left[x_{1}, x_{2}, \cdots, x_{n}\right]\right]$ is also Noetherian.

PROOF. Let H be an ideal in $R\left[\left[x_{1}, x_{2}, \cdots, x_{n}\right]\right]$ and $\left\{H_{\alpha} \mid \alpha \in P^{n}\right\}$ the corresponding lowest coefficient ideals. It follows from Lemma 2.1 that this collection of ideals is a generalized ascending chain of ideals in R and since R is Noetherian this collection is finite, i. e., there exists $\triangle=(N, N, \cdots, N)$ such that for each $\alpha=\left(i_{1}, i_{2}, \cdots, i_{n}\right) \in P^{n}$ with $\max _{k} i_{k} \geq N, H_{\alpha}=H_{\beta}$ for some $\beta \leq \triangle$. Since R is Noetherian, each H_{α} is finitely generated, say by elements $b_{\alpha 1}, b_{\alpha 2}$, $\cdots, b_{\alpha m_{x}}$. By the Axiom of Choice, for each $\alpha \leq \triangle$ and $k \in\left\{1,2, \cdots, m_{\alpha}\right\}$ we can choose a polynomial $f_{\alpha, i}$ in H with $b_{\alpha i z}$ as the coefficient of its lowest term. The proof of the theorem will be completed by showing that the finite set $\left\{f_{\alpha k}: 1 \leq k \leq m_{\alpha}, \alpha \leq \Delta\right\}$ generates H. To this end, consider a typical polynomial $f=\Sigma a_{\lambda} X^{\lambda}$ in H with lowest term $a_{\tau} X^{\tau}$. Let $|\tau|=r$. Then the least degree of f is r. If $\tau=\left(t_{1}, t_{2}, \cdots, t_{n}\right)$, then $t_{j}>N$ for some j or $t_{j} \leq N$ for each j. If $t_{j}>N$ for some j, then there exists $\alpha \leq \triangle$ such that $\tau>\alpha$ and $H_{i}=H_{\alpha}$. Hence the lowest coefficients of the polonomials

$$
X^{\tau-\alpha} f_{\alpha 1}, X^{\tau-\alpha} f_{\alpha 2}, \cdots, X^{\tau-\alpha} f_{\alpha m}
$$

generate $H_{\tau^{*}}$. Thus there are elements $c_{\tau 1}, c_{\tau 2}, \cdots, c_{\tau m 2}$ in R such that the lowest term of $f_{1}=f-\Sigma c_{\tau k} f_{\alpha k}$ is higher than that of f or the least degree of f_{1} is higher than r, and f_{1} lies in H. If f and f_{1} have the same lowest degree r, then we can repeat the process with f_{l}. Since there are only a finite number of terms of f of degree r that are higher than a given one, a finite number of applications of this process will yield a polynomial $g=f-\Sigma c_{\tau k} f_{\alpha k}$, the sum taken over all τ with $|\tau|=r$ and corresponding α, such that the least degree of g is greater than r and g lies in H. On the other hand, if $t_{j} \leq N$ for all j, then $\tau \leq \eta$ and a process similar to the above will yield a polynomial $g^{\prime}=f-\Sigma c_{k \tau}$ $f_{\tau k} \in H$ such that the least degree of g^{\prime} is greater than r. Consequently, by induction on the least degree of f we can find a polynomial $h \in H$ generated by $\left\{f_{\alpha_{k}}\right\}, \alpha \leq \Delta$, such that $f-h=0$. Therefore H is generated by $\left\{f_{\alpha_{k}}\right\}, \alpha \leq \triangle$.
and it follows that $R\left[\left[x_{1}, x_{2}, \cdots, x_{n}\right]\right]$ is Noetherian.

University of Alabama in Birmingham
Birmingham, Alabama 35294

REFERENCES

[1] L. Dale, Generalized Ascending Chains with an Application to Hibert's Theorem, Journal of Natural Sciences and Mathematics 19 \#2(1979), 231-238.
[2] D. Hilbert, Gesammelte Abhandlungen, Volume 1, Chelsea, New York, 1965.

