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UNIQUE DETERMINATION OF ANY ANALYTIC FUNCTION CF TWQ
REAL VARIABLES FROM ITS VALUES GIVEN ON THE POINTS
OF A DENUMERABLE SET

By Alexander Abian

This paper is in the setup of real numbers. Let f(x, ») be an analytic function
(of two real variables x and y) in a nonempty open disk D with center at the
origin (0, 0). As such, f(x, y) has a power series expansion in x and y valid
in D given by:
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For our convenience, we have written f(x, ) in (1) as a sum of infinitely
many homogeneous polynomials P,(x, y) of degree & with £A=0, 1, 2, --
where

@ P(x, ) =czhu:»:l;’~‘r¢fzk_1.1::"'_1y-l-'---—:armm:my'h%‘---+au‘_l:rcy't'ml-i—.:tol,i;y"t

Let g be a function of a complex variable z such that g is analytic in an
open disk |z|<r. We recall [1, p. 87] that g is uniquely determined in D by
its values given on the points of any ¢enumerable subset § of |z|<r such that
0 is a limit point of S. This is not the case in connetion with real analytic
functions. For instance, the function xy as well as xr"y vanishes at cvery point
of the denumerable set {(0, k_l)]k=1, 2, 3, -} and vet, xy and xzy arc not
identical in any nonempty open isk D (of the xy-plane) with center at tke
origin (0, 0). However, as shown below, there always exists a denumerable
subset E of D such that if two real analytic functions agree on E then they
arc identical.

In what follows, we let (#;);_¢,,2,.. be @ sequence of nonzero real numbers:
which converge to 0. Thus,

(3 gi_{gcpkzo with p,7#0 for £=0, 1, 2, -

Also, in what follows, we let £ be the denumerable subset of the xy-plane
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defined by:
@ E={@ 6Dk n=0, 1, 2, )
where p, is given by (3). From (3) it follows that

(5) lim (8}, 2}"H=,0) for n=0, 1, 2,
f—co

Moreover, we let D be a nonempty open disk (of the xy-plane) with center at
{0,0). In view of (3), we may assume (without loss of generality) that £ is a
subset of D.

Furthermore, as mentioned above, we let f(x, y) be an analytic function (of
two real variables x and y) defined in D whose power series ¢xpansion in D is
given by (1).

Finally, let the following real numbers
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be given which represent the values of f(x, ) at the points of the subset E
of D where E is as given in (4).

Now, based on (3), (4) and (5), we determine (uniquely) the values of a,,,

‘s in (1), which in turn determine uniquely f(x, ¥) in the entire ID.

To determine @, let us take from both sides of equality (1) limit

o

(D as k—oo with (x, =(p,, 5))

Since f(x, ) is analytic (and a fortiori continuous) in D, clearly lim £z, y)

R—co

is uniquely determined (in fact is equal to f(0, 0)) by its values f(p, pg),

£, pf), f(p, p;). --- which are given in (6). Also, in view of (5), it follows
readily that the limit (according to (7)) of the series immediately to the right
of @y in (1) is equal to 0. Hence,

® ay= lim /(o). b
and therefore @y, is uniquely determined by (6).

To determine a,, let us subtract a,, from both sides of equality (1) and then
divide both sides by x and then take from both sides limit according to (7).

From (5) it readily follows that the limit (according to (7)) of the product of
+ ! and the series immediately to the right of a;x in (1) is equal to 0. This
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is because the limit according to (7) of each of y/x, x, ygf’x. -« is equal to
«). Hence (using (8)),

- 4 tim TP P2~
k—co by
and therefore @, is uniquely determined by (6).
To determine @, let us subtract @y +a;,# from both sides of equality (1) and
then divide both sides by y and then take from both sides limit

¢10) as k—co with (x, »)=(p% b))
From (5) it readily follows that the limit (according to (10)) of the product of
y_l and the series immediately to the right of a,,y in (1) is equal to 0. This is

“because the limit according to (10) of each of x"’/'y, % ¥ xs/y. -+ is equal to
0. Hence (using (8) and (9)),

9 3 2
N f(Pk, Pk)_ﬂm—a]g pk
(11) @y = lim q
k=00 pk
;and therefore @, is uniquely determined by (6).

To clarify our procedure we explicitly calculate two more coefficients.

To determine a,, let us subtract @,+a,,x+a, ¥ from both sides of equality
(1) and then divide both sides by «> and then take from both sides limit accor-
«ding to (7). From (5) it readily follows that the limit (according to (7)) of
the product of x % and the series immediately to the right of asz2 in (1) is
-equal to 0. This is because the limit according to (7) of each of y/x, =, ¥, yz
/%, ya/x. -+ is equal to 0. Hence (using (8), (9) and (11)),

12 ay=lim T2 20 "% Gk~ Sty
k—co p;

-and therefore a,, is uniquely determined by (6).

To determine , let us subtract am+alax+al71y+amx3 from both sides of
-equality (1) and then divide both sides by xy and then take from both sides
limit according to (10). From (5) it readily follows that the limit (according
to (10)) of the product of x_ly_l and the series immediately to the right of
@, xy in (1) is equal to 0. This is because the limit according to (10) of each

a

of y/z, X ‘¥, % ¥ ¥/x, -~ is ecqual to 0. Hence (using (8), (9), (11) and
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(12)),
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and therefore @, is uniquely determined by (6).

From (8), (9), (11), (12) and (13) we see that each of the coefficients a,
@y @y Gy @y IS obtained in terms of the previous ones. Morcover, @, @,
@, are obtained by taking limit according to (7), whereas ¢y, @,, are obtained
by taking limit according to (10).

We claim that in general ¢, appearing in (1) is uniquely determined in
terms of @y, @, Gop Ayps "% Gy Moreover, after performing the re-
quired subtraction and division for m, n=0, 1, 2

-y

(14)  a,, is obtained by taking limit as 2—oo with (x, y)=(ﬁ';+l. P:+2)

We note that in (14) it is the case that (p:'"l, p:”) is independent of m.
This is in accordance with the fact that Gy Gy Gy are obtained by taking
limit according to (7), whereas a, a,, according to (10).

To prove our claim, let us suppose that @y, a,, @y, @x ** @, ,_; &€

s _ . 2 i m+l n—1
determined. Next, let us subtract gy +a, 2+@,y+a, &+ +a,, 1, % ¥

from both sides of equality (1) and then divide both sides by x™3" and then
take from both sides limit according to (14). From (5) it readily follows that
the limit (according to (14)) of the product x "y " and the series immediately
to the right of @, "y" in (1) is equal to 0. This is because the limit according
to (14) of each of

2 1 1 2
a L (L), - (L) e L
x, % » ] x * n v s
¥
is equal to 0. Hence,

241 7 +2 -+ 1 42
Sy s by D—Gy—ayb, —aub, —
m(n+1)+n(n+2)

by

(16) @,y =k1im

(m+ 1D)(r+1)+ (m—1)(r+2)
—am+1.l—lpk

and therefore g, , is uniquely determined by (6).

The reason that in (14) we have chosen (x, y)=(ﬁ:+1. p:+2) is precisely~

to make the limit according to (14) of the two essential ratios y/x and z" ™' /3™



Unique Determination of any Analytic Function of two Real Veriable 187
Sfrom its Values Given on the Points of a Denumerable Set

in (15) equal to 0.
Obviously, in view of (1), (3), (4), (6) and (16) we have proved:

THEOREM. Let f(x, y) be an analytic function of two real variables x and y in
a nonempiy open disk D with center af (0, 0). Then f(x, v) is uniquely determined
by its values at the points of a denumerable subset {(p:“, p’;”)l k, u=0, 1, 2,
-} of D where (p,) k=0,1,2,.. 1S @ sequence of nonzero real numbers which conver-
ges to 0.

It is clear how to modify the statement of the Theorem when it refers to a
disk with center other than (0,0) or to real analytic functions of more tham
two variables.
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