UNIQUE DETERMINATION OF ANY ANALYTIC FUNCTION OF TWO REAL VARIABLES FROM ITS VALUES GIVEN ON THE POINTS OF A DENUMERABLE SET

By Alexander Abian

This paper is in the setup of real numbers. Let $f(x, y)$ be an analytic function (of two real variables x and y) in a nonempty open disk D with center at the origin (0,0). As such, $f(x, y)$ has a power series expansion in x and y valid in D given by:

$$
\begin{align*}
f(x, y) & =a_{00}+\left(a_{10} x+a_{01} y\right)+\left(a_{20} x^{2}+a_{11} x y+a_{02} y^{2}\right)+\left(a_{30} x^{3}+\cdots\right)+ \tag{1}\\
& +\cdots+\left(a_{h 0} x^{h}+a_{h-1,1} x^{h-1} y+\cdots+a_{m n} x^{m} y^{n}+\cdots+a_{0 h} y^{h}\right)+\cdots
\end{align*}
$$

For our convenience, we have written $f(x, y)$ in (1) as a sum of infinitely many homogeneous polynomials $P_{h}(x, y)$ of degree h with $h=0,1,2, \cdots$ where

$$
\begin{equation*}
P_{h}(x, y)=a_{h 0} x^{h}+a_{h-1,1^{x}} x^{h-1} y+\cdots+a_{m n} x^{m} y^{n}+\cdots+a_{1, h-1} x y^{h-1}+a_{0 h} y^{h} \tag{2}
\end{equation*}
$$

Let g be a function of a complex variable z such that g is analytic in an open disk $|z|<r$. We recall $[1, p$. 87] that g is uniquely determined in D by its values given on the points of any cenumerable subset S of $|z|<r$ such that 0 is a limit point of S. This is not the case in connetion with real analytic functions. For instance, the function $x y$ as well as $x^{2} y$ vanishes at every point of the denumerable set $\left\{\left(0, k^{-1}\right) \mid k=1,2,3, \cdots\right\}$ and yet, $x y$ and $x^{2} y$ are not identical in any nonempty open isk D (of the $x y$-plane) with center at the origin (0,0). However, as shown below, there always exists a denumerable subset E of D such that if two real analytic functions agree on E then they are identical.

In what follows, we let $\left(p_{k}\right)_{k=0,1,2}, \ldots$ be a sequence of nonzero real numbers. which converge to 0 . Thus,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} p_{k}=0 \text { with } p_{k} \neq 0 \text { for } k=0,1,2, \cdots \tag{3}
\end{equation*}
$$

Also, in what follows, we let E be the denumerable subset of the $x y$-plane

[^0]defined by:
\[

$$
\begin{equation*}
E=\left\{\left(p_{k}^{n+1}, p_{k}^{n+2}\right) \mid k, n=0,1,2, \cdots\right\} \tag{4}
\end{equation*}
$$

\]

where p_{k} is given by (3). From (3) it follows that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(p_{k}^{n+1}, p_{k}^{n+2}\right)=(0,0) \text { for } n=0,1,2, \cdots \tag{5}
\end{equation*}
$$

Moreover, we let D be a nonempty open disk (of the $x y$-plane) with center at $(0,0)$. In view of (3), we may assume (without loss of generality) that E is a subset of D.

Furthermore, as mentioned above, we let $f(x, y)$ be an analytic function (of two real variables x and y) defined in D whose power series expansion in D is given by (1).

Finally, let the following real numbers

$$
\begin{align*}
& f\left(p_{0}^{1}, p_{0}^{2}\right), f\left(p_{1}^{1}, p_{1}^{2}\right), f\left(p_{2}^{1}, p_{2}^{2}\right), \cdots, f\left(p_{0}^{2}, p_{0}^{3}\right), f\left(p_{1}^{2}, p_{1}^{3}\right), f\left(p_{2}^{2}, p_{2}^{3}\right), \cdots, \tag{6}\\
& f\left(p_{0}^{n+1}, p_{0}^{n+2}\right), f\left(p_{1}^{n+1}, p_{1}^{n+2}\right), f\left(p_{2}^{n+1}, p_{2}^{n+2}\right), \cdots, f\left(p_{k}^{n+1}, p_{k}^{n+2}\right), \cdots
\end{align*}
$$

be given which represent the values of $f(x, y)$ at the points of the subset E of D where E is as given in (4).

Now, based on (3), (4) and (5), we determine (uniquely) the values of $a_{m n}$ ' s in (1), which in turn determine uniquely $f(x, y)$ in the entire D.
To determine a_{00} let us take from both sides of equality (1) limit

$$
\begin{equation*}
\text { as } k \rightarrow \infty \text { with }(x, y)=\left(p_{k}, p_{k}^{2}\right) \tag{7}
\end{equation*}
$$

Since $f(x, y)$ is analytic (and a fortiori continuous) in D, clearly $\lim _{k \rightarrow \infty} f(x, y)$ is uniquely determined (in fact is equal to $f(0,0)$) by its values $f\left(p_{0}, p_{0}^{2}\right)$, $f\left(p_{1}, p_{1}^{2}\right), f\left(p_{2}, p_{2}^{2}\right), \cdots$ which are given in (6). Also, in view of (5), it follows readily that the limit (according to (7)) of the series immediately to the right of a_{00} in (1) is equal to 0 . Hence,

$$
\begin{equation*}
a_{\nu 0}=\lim _{k \rightarrow \infty} f\left(p_{k}, p_{k}^{2}\right) \tag{8}
\end{equation*}
$$

and therefore a_{00} is uniquely determined by (6).
To determine a_{10} let us subtract a_{00} from both sides of equality (1) and then divide both sides by x and then take from both sides limit according to (7). From (5) it readily follows that the limit (according to (7)) of the product of x^{-1} and the series immediately to the right of $a_{10} x$ in (1) is equal to 0 . This
is because the limit according to (7) of each of $y / x, x, y, y^{2} / x, \cdots$ is equal to 4. Hence (using (8)),

$$
\begin{equation*}
a_{10}=\lim _{k \rightarrow \infty} \frac{f\left(p_{k}, p_{k}^{2}\right)-a_{0}}{p_{k}} \tag{9}
\end{equation*}
$$

and therefore a_{10} is uniquely determined by (6).
To determine a_{01} let us subtract $a_{00}+a_{10} x$ from both sides of equality (1) and then divide both sides by y and then take from both sides limit

$$
\begin{equation*}
\text { as } k \rightarrow \infty \text { with }(x, y)=\left(p_{k}^{2}, p_{k}^{3}\right) \tag{10}
\end{equation*}
$$

From (5) it readily follows that the limit (according to (10)) of the product of y^{-1} and the series immediately to the right of $a_{01} y$ in (1) is equal to 0 . This is because the limit according to (10) of each of $x^{2} / y, x, y, x^{3} / y, \cdots$ is equal to 0. Hence (using (8) and (9)),

$$
\begin{equation*}
a_{01}=\lim _{k \rightarrow \infty} \frac{f\left(p_{k}^{2}, p_{k}^{3}\right)-a_{00}-a_{10} p_{k}^{2}}{p_{k}^{3}} \tag{11}
\end{equation*}
$$

and therefore a_{01} is uniquely determined by (6).
To clarify our procedure we explicitly calculate two more coefficients.
To determine a_{20} let us subtract $a_{00}+a_{10} x+a_{01} y$ from both sides of equality (1) and then divide both sides by x^{2} and then take from both sides limit according to (7). From (5) it readily follows that the limit (according to (7)) of the product of x^{-2} and the series immediately to the right of $a_{20} x^{2}$ in (1) is equal to 0 . This is because the limit according to (7) of each of $y / x, x, y, y^{2}$ $/ x, y^{3} / x, \cdots$ is equal to 0 . Hence (using (8), (9) and (11)),

$$
\begin{equation*}
a_{20}=\lim _{k \rightarrow \infty} \frac{f\left(p_{k}, p_{k}^{2}\right)-a_{0}-a_{10} p_{k}-a_{01} p_{k}^{2}}{p_{k}^{2}} \tag{12}
\end{equation*}
$$

and therefore a_{20} is uniquely determined by (6).
To determine a_{11} let us subtract $a_{00}+a_{10} x+a_{01} y+a_{20} x^{2}$ from both sides of equality (1) and then divide both sides by $x y$ and then take from both sides limit according to (10). From (5) it readily follows that the limit (according to (10)) of the product of $x^{-1} y^{-1}$ and the series immediately to the right of $a_{11} x y$ in (1) is equal to 0 . This is because the limit according to (10) of each of $y / x, x^{2} / y, z, y, y^{2} / x, \cdots$ is equal to 0 . Hence (using (8), (9), (11) and
(12)),

$$
\begin{equation*}
a_{11}=\lim _{k \rightarrow \infty} \frac{f\left(p_{k}^{2}, p_{k}^{3}\right)-a_{0}-a_{10} p_{k}^{2}-a_{01} p_{k}^{3}-a_{20} p_{k}^{4}}{p_{k}^{5}} \tag{13}
\end{equation*}
$$

and therefore a_{11} is uniquely determined by (6).
From (8), (9), (11), (12) and (13) we see that each of the coefficients a_{00}. $a_{10}, a_{01}, a_{20}, a_{11}$ is obtained in terms of the previous ones. Moreover, a_{00}, a_{10}, a_{20} are obtained by taking limit according to (7), whereas c_{01}, a_{11} are obtained by taking limit according to (10).

We claim that in general $a_{m n}$ appearing in (1) is uniquely determined in terms of $a_{00}, a_{10}, a_{20}, a_{11}, \cdots, a_{m+1, n-1}$. Moreover, after performing the required subtraction and division for $m, n=0,1,2, \cdots$
(14) $\quad a_{m n}$ is obtained by taking limit as $k \rightarrow \infty$ with $(x, y)=\left(p_{k}^{n+1}, p_{k}^{n+2}\right)$

We note that in (14) it is the case that $\left(p_{k}^{n+1}, p_{k}^{n+2}\right)$ is independent of m. This is in accordance with the fact that a_{00}, a_{10}, a_{20} are obtained by taking limit according to (7), whereas a_{01}, a_{11} according to (10).

To prove our claim, let us suppose that $a_{00}, a_{10}, a_{01}, a_{20}, \cdots, a_{m+1, n-1}$ are determined. Next, let us subtract $a_{00}+a_{10} x+a_{01} y+a_{20} x^{2}+\cdots+a_{m+1, n-1} x^{m+1} y^{n-1}$ from both sides of equality (1) and then divide both sides by $x^{m} y^{n}$ and then take from both sides limit according to (14). From (5) it readily follows that the limit (according to (14)) of the product $x^{-m} y^{-n}$ and the series immediately to the right of $a_{m n} x^{m} y^{n}$ in (1) is equal to 0 . This is because the limit according. to (14) of each of

$$
\begin{equation*}
\frac{y}{x},\left(\frac{y}{x}\right)^{2}, \cdots,\left(\frac{y}{x}\right)^{m} ; \frac{x^{n+1}}{y^{n}}, \frac{x^{n}}{y^{n-1}}, \cdots, \frac{y^{m+1}}{x^{m}} ; \frac{x^{n+2}}{y^{n}}, \cdots \tag{15}
\end{equation*}
$$

is equal to 0 . Hence,

$$
\begin{align*}
& a_{m n}=\lim _{k \rightarrow \infty} \frac{f\left(p_{k}^{n+1}, p_{k}^{n+2}\right)-a_{0}-a_{10} p_{k}^{n+1}-a_{01} p_{k}^{n+2}-\cdots}{p_{k}^{m(n+1)+n(n+2)}} \tag{16}\\
&-a_{m+1, n-1} p_{k}^{(m+1)(n+1)+(n-1)(n+2)}
\end{align*}
$$

and therefore $a_{m n}$ is uniquely determined by (6).
The reason that in (14) we have chosen $(x, y)=\left(p_{k}^{n+1}, p_{k}^{n+2}\right)$ is precisely to make the limit according to (14) of the two essential ratios y / x and x^{n+1} / y^{m} :
in (15) equal to 0.
Obviously, in view of (1), (3), (4), (6) and (16) we have proved:
THEOREM. Let $f(x, y)$ be an analytic function of two real variables x and y in a nonempty open disk D with center at $(0,0)$. Then $f(x, y)$ is uniquely determined by its values at the points of a denumerable subset $\left\{\left(p_{k}^{n+1}, p_{k}^{n+2}\right) \mid k, n=0,1,2\right.$, $\cdots\}$ of D where $\left(p_{k}\right)_{k \neq 0,1,2, \ldots}$ is a sequence of nonzero real numbers which converges to 0 .

It is clear how to modify the statement of the Theorem when it refers to a disk with center other than (0,0) or to real analytic functions of more than two variables.

Department of Mathematics Iowa State University Ames, Iowa 50011
U.S.A.

REFERENCE

[1] Knopp, K., Theory of Functions, Part one, Dover Pub. New York, 1945.

[^0]: 1980 Mathematics Subject Classification. Primary 26E05
 This work is partly supported by the Iowa State University SHRI.

