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A Note on the Gauss Map of a Complete
Minimal Surface in R

By Dong-Soo Kim

0. INTRODUCTION

An immersed submanifold M into N is called minimal if its mean curva-
ture vector vanishes at every point. Using the method of calculus of
variations, we can show that for an immersion fiM=—+ N of a compact oriented
manifold M with boundary into N, the immersion fis a critical point for the
volume function V (g), among all immersions g M—=N with g= fon the boun-
dary of M, if and only if M is a minimal (immersed) submanifold ((3} or (7]).
In particular, if fis volume-minimizing among all such immersions, then fis mi-
nimal. Thus the study of the minimal submanifold may be regarded as a gener-
alization of the study of geodesics, because of the fact that a piecewise smooth
curve C is a geodesic if and only if C is a critical point for the length function
or equivalently for the energy function [(4) or [6)). As well as the volume-
minimizing properties, minimal submanifolds have much interesting properties. A~
mong these properties we consider mainly the properties which the Gauss mapofa c-
omplete minimal submanifold has. A wellknown theorem of Osserman states that the im-
age of the Gauss map of a complete nonflat regular minimal surface in R’ is dense
in 8" ((5), p. 68). It can be proved that every flat minimal surface in R 'is
a plane ((3), p. 116) and that no minimal surface without boundary in R" can
be compact ([3}, p. 14). So we consider only connected nonflat (noncompact)
minimal surfaces in R’

In this note we represent some typical examples and interesting properties of
minimal surfaces in R", and we improve the Osserman’s Theorem by showing
that the Gauss map of a complete regular minimal surface in R’ omits at most
six points, following the Xavier’s paper ([10]) with correcting some errata.
""" there are examples whose Gauss

map omits exactly the set in 8° (Theorem 3). But no examples have been
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known where the omitted sets have 5 (or 6) points. Throughout this note,all
surfaces will be connected and oriented submanifolds of R® with the induced me-
tric.

I. PRELIMINARIES AND EXAMPLES

We state a theorem which plays a major role in the theory of minimal surfac-
es in R” and which allows us to construect a great variety of minimal surfaces
in R’.

THEOREM 1. (Weierstrass Representation Theorem of Minimal Surfaces)
Let D be a domain in the complex plane, g an arbitrary meromorphic function
in D and fan analytic function in D having the property that at each point
where g has a pole of order m, f has a zero of order at least 2m. set ¢.=f
(1—g") /2, $,=if(1 +&)/2, $,=/s
Suppose that the analytic functions ¢, have no real periods on D, i e.the real
part of the integral of ¢, on a curve in D depends only on the end points. (In
particular, if D is simply connected, every analytic function in D has no real
periods.) Then the function x= (x,, x,., x,) . D—— R’ will define a minimal sur-
face M in R' whose metric is given by ds'=A"{ dz| ' where A= | f| (1+
lg|*) /2 and xk(z)mRe(gzsi,(w) dw)--(*) And M is regular if and only if f
satisfies the further properties that it vanishes only at the poles of g and the

order of its zero at such a point is exactly twice of the order of the pole of g.

Proof. The proofs can be found in {3) and [5].
For simply connected minimal surfaces, we can prove the following, using

the Koebe Uniformization Theorem ({5]).

THEOREM 2. Every simply connected minima! surface M in R® can be re-
presented in the form (*), where the domain D is either the unit disk or the

entire plane.

THEOREM 3. ([8])) Let M be an immersed surface in R® with the Gauss map n.
If M is minimal, then n is conformal (angle-preserving) at all points where the
curvature k# 0. Conversely, if n is conformal, and Mis connected, then eith
er M is a minimal surface, with k< 0, or M is part of a sphere.

Let 72 S§°— {(0,0,1)}—R" be the stereographic projection and let M be the
surface in the theorem 1. Then it can be shown that g=1#ens.x, where n is
the Gauss map of M. ({3), p. 113 or (5], p. 66). Hence the poles of g
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occur exactly at those points p&M where n(p) = (0,0,1). Thus, if n omits at
least one point of S*, we may assume, by making a rotation of coordinates,
that g has no poles on D (i. e. g is analytic in D).

Now we give some fundamental examples of complete minimal surface in R’
The representation of these examples in the form in Theorem 1 can be found
in (3) and (8).

(1) Plane . ax+ by+ cz=d, where (a, b, ¢) # (0,0, 0).

The Gauss map of this surface is constant. And this is the unique complete
flat minimal surface in R’.

(2) Catenoid . (cosh ;)’—-“ (y/c)'+ (2/¢)f, (e# 0) constant.

The Gauss map omits 2 points (% 1,0,0). This is the only complete minimal
surface which is also a surface of revolution. ({3), [(7]).

(3) Helicoid : gr—tang, c# 0 constant.

The Gauss map omits 2 points (0,0, =1). This is the only complete ruled
minimal surface. ((3), (7)).

(4) Scherk’s surface ! e“cos x=cos y.

The Gauss map omits four points (£ 1,0,0) and (0, =1,0). ((3), (7).

(5) Enneper’s surface ! x=Re(w~-w"/3), y=Re{i{w+w'/3)), z=Re(w’),
where w ranges over the complex plane. The Gauss map omits one points (0,
0,1).

(6) Schwarz surface ((3), p. 104)

(7) Gyroid

This is an infinitely connected periodic minimal surface containing no straight
lines, recently discovered and christened by A. H. Schoen. (See the picture
in (5)).

We have given examples of minimal surfaces whose Gauss map omits 1, 2
and 4 points. But, alternatively, using Theorem 1, we can get the following.

The proof can be found in (5).

THEOREM 4. Let E be an arbitrary set of k points on S*, where k< 4.
Then there exists a complete regular minimal surface in R' whose image under
the Gauss map omits precisely the set E,

2. DEFINITIONS AND LEMMAS

DEFINITION 1. A function meromorphic in the unit disk is called normal if
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the family of functions e"z+zo teR, |z} < 1} is normal in Montel’s
sense, [ e, any seguence in the famxly contains a subsequence converging un-
iformly on compact subsets of the unit disk.

LEMMA 1. A function f(2z) meromorphic in the unit disk is normal if and

only if =1z | f(2) |
1+ | flz) |°

Proof. See the Theorem 6.5 in (1).

<C (| 2] <1, where Cis a constant.

Lemma 2. Let fbe a holomorphic function in the unit disk D and let
SA 0, a(#0). Let a=1—1/k, keZ*. Then we have

7] ‘,;f if[ = & L7(D) for every p with 0 < p< 1.

Proof. Since f"omits two values, it is normal (see {1J, p. 169). Using
the lemma 1 for f“*, we can show that

| [ .. C . s EC
k|f|._;/n(]+if|z/n) \\‘1_'2'1 s0 that ffia+'f;za\l‘”[2'

Hence the fact that (1— | 2| ) ~eL"(D) for 0 < p< 1 completes the proof.

DEFINITION 2. Let M be a connected Riemaunian n-dimensional manifold.
The Laplace-Beltrami operator on M is a map 4 C” (M) — C”™ (M) defined by
the formula (1), or equivalently by (2)

'

(1) df= —*d(*df), where * is the Hodge star operator.
2)4f~f2:. 141 30 (Jg B’”“i;‘), where (z',-, 2") are local

coordinates, the metric ds’= X 'g,dx'dx’. the matrix {g") = (g,) 7 and g=det
(o).

LEMMA 3  Let M be a complete Riemannian manifold and u a nonconstant
and nonnegative function satisfying 4 log u= 0 almost everywhere.
Then guu”=oo for p>0.

Proof. See the Theorem 1 in (9].

3. MAIN THEOREM

THEOREM & The Gauss map of a complete nonflat minimal surface in R®
omits at most 6 points of §°.
Proof. Suppose that M is a complete nonflat minimal surface in R® whose G-

auss map omits at least 7 points,
By passing to the universal covering surface we may assume that M is simply
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connected. By Theorem 2 M can be represented in the form (*) where the
domain D is either the unit disk or the entire plane.

Since the Gauss map omits at least one point and M is not flat, we may assume
that g i1s a nonconstant holomorphic function. Since M is regular, the holom-
orphic function f# 0. If D is the entire plane, then by the Picard Theorem
g assumes all complex values with at most one exception. Hence the Gauss
map omits at most 2 points. This contradiction shows that D must be the unit
disk. In view of this we are reduced to the following :

() --Let f. g be holomorphic functions on the unit disk D, And | f| >0.
Suppose that for six distinct complex numbers a,, a,, -+, a, the equation g(z) —
a, has no solution(i=1,2,-+,6). Then the mectric A" | dz | * on D is not com-

plete, where A= | f| (1+ | g *)/2.

Proof. Suppose that the metric is complete and consider the function A=
f7g M. (g—a,)™", where 10/11<a<]1 is as in the lemma 2 and p=5/(6a)}.
f™* is well--defined because | f]| >0. Since g,= A"0, and g” =474,

the Laplace-Beltrami operator 4 is given by the formula : for keC” (M),
4 (k) =—‘j§lz; é% (/g &’”“%}) "Xlﬂ'ng{+ 'g‘y{g) ‘-—-7;17 %%k‘ where z=x+1iy. Let u=
| ] =(h h)“ Then dlog u=(dlog h+ dlog k)/2=0 almost everywh-
ere, because of the fact that g’ = 0 on a set of measure zercand at every
point where g’ # 0, log h has a holomorphic branch in a neighborhood of that
point. We assert that u& L" (D). Indeed, if u is a {(necessarily nonzero) constant,
this follows from the fact that complete simply connected surfaces of non-positive
curvature have infinite volume. If u is not constant this follows from the lemma
3. Since the area element is A'dx dy and A= | f| (1+ | g| *)/2, the condition
u@L’ (D) can be written 3 SD] g1 0+ gl W2, | g—a | Tdx dy=cc.The
contradiction will be achieved by showing that this integral is aciually finite.
Let D,= {z€D | g(z)—a,| <st, where 0<s< i min {| e ~a, | ! i#k!i
k=1,2, -, 6}. Then for i#j, D, ND,=¢. Let D'=D—U, D,
Denoting by H(z) the integrand of the last integral, we have
[ Hde dy=32 § Hdx dy+ | Hdxdy

(1) On each D,, since |gl <|a| +sand | g—a,| ™= (3s) 7 for each
i(#j), we have an estimate H<C(|g'| */| g—a,| ™). we may also assume
s<1. hence |g—a,|" "< | g—a,|°. Thus 2 lg—a|">] g—a/|"+|g—al"™",
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so that [ g "/ g—a/ | "<2"[ &' | /(| g—a | "+ |g—a | )"
Hence XDJH dx dy < co by the lemma 2.

{2) On D°, since (1+ | gl )| g—a, |11, | g—a, | “<B for some B,
H<B| g !|”| g—a.| 7. (note that pa=5/6.) The fact that 1/p=a and 10/11

140

< a implies that C,| g—a,| "> | g—a, | “and C,{ g—a,| " | g—a,|* ™ for
some constants C,, C,. Hence Clg—a,| "=(| g—a, | "+ | g—a, |’ for
some C, so that H<C'| g'| /(| g—a, | "+ | g—a,| ")’ on D' for some C’

Therefore SD, H dx dy <o by the lemma 2.

NOTE. The problem of determining the exact size of the image under the Ga-
uss map of complete regular minimal surfaces in R* is still unsolved, although

many mathematicians have tried to solve it.
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