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On the H" Space with 0 <P<1

By Hyun-Joon Choi

1. Introduction

The space H” is defined to be the class of all functions f=f(2) which are re-

gular on the interior of the unit circle and such that Sup|," | f(re") | "df< o,
0% ¥ <y

For arbitrary fEH" we define “norm of f” as

IS =Sup(1/2m) 7| flre™) |d6) ",

When 0<p< 1, H’ becomes a complete, perfectly seperable, linear topo-
logical space under the topology . Us H® is open in case for arbitrary f, €U it
is true that there exists r >0 such that E,[ | f—f, || <r] (sphere of radius r
about f,} lies in U. In fact H® is linearly homeomorphic to a closed subspace
of L” [0,27). We will show that properties in this paper.

And, we will investigate some important properties of linear functionals in H”
space with 0 < p<1, finally we will show that a weakly convergent sequence
in H® converges uniformly on any compact subset of the unit circle to its weak
limit.

2. Preliminaries

The following inequalities, valid for 0<{p<( 1, are easily established by a con-
sideration of the function (1-+¢")/(1+¢°

(1) (a+b)°<a+b",a=0, b= 0.
2) ("+b)"<2 " (a+b) aZ 0,02 0.

However, Theorem 19. p.19 of [3) vields (1), while Theorem 13. p.24 of
the same reference yields (2) by letting & and b of that reference be respec-
tively p and unity.

From the definition of the norm in H, 0 < p< 1, and (1) it is clear that f
and g are in H® we have

3) I fAegl’stfIl"+ lgh”
Inequality (2) yields (N f8 "+ N glh”)"'s 2" (1 fl+ 1 gll), whence,we
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obtain from (3)

@) I gl s20

|+ hel)

3. The topology of H*

Theorem 3.1 H’ is a linear topological space.

Proof. That H" is a vecter space is implied by cither of the inequalities(3)or
(4) and the obvious homogenity of the norm. It is clear that the union of any
number of open sets is open and the intersection of any two open sets is open.
We note that the spheres in H® are open sets as a direct consequence of (3).

As a result of this, inequlity (3) or (4}, and the fact that if the norm of an
element of H vanishes then the element is necessarily the zero element of H’,
we conclude that the Hausdorff seperation axiom holds in H".

The continuity of addtion and scalar multiplication in H® is a direct consequ-
ence of (3) and {4),

Theorem 3.2 If f€H’ then
VA s /7a=1z1)7" 2] <1
Proof. We may assume that f# 0
By virtue of F. Riesz’s decomposition, we may write flz) =glz)h(2), where
h(z) is regular and bounded by unity on !z | <1, and g€ H with | gl = | fI
and glz2)# 0 on |z} < 1.
Thus it is clear that (g(2)]° may be defined so that it is a member of H.

By Cauchy’s integral formula,
o Lglpe) ) pe” db,

(glz)) =4, )i P l 2| <p< 1.
l’) ‘ ,
Thus lglz) | ”§3I;"_:_"T“;l (4 Si” Lglpe™) | " dt)
‘” 3 @ v 4
< P gl "= PR A

Thus, | flz) | "S (/1= | 2]) -0 fi " the desired conclusion.

Theorem 3,3 H’ is complete.

Proof. A proof of the completeness of H {for 1 sip is to be found in A. E.
Taylor’s paper and the proof is trivially modified for our case when 0< p<l,
when we note the Theorem 3.2. M.Dav has defined a topology over L"{0,27)
which is egivalent to the following: a set U L"[0,27) is said to be open in
case for arbitrary f, € Uit is true that there exists some positive number r > ()
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such that E,[ | f—f, | <r] lies in U, where for arbitrary f& L°(0.27), | f|
= ((1/2m) - {71 7(8) | *ab) "
That L°(0, 27) is a linear topological space is seen just as it was that H'is

linear topological space.

Theorem 3.4 H’ is equivalent to a closed subspace of L°{0,2x) (that is ,
there exists an algebraic isomorphism I of H® onto & closed subspace of L’

(0,27), and the isomorphism being norm preserving.)

Proof. F. Riesz has shown that if f& H°, then lrm:x f(re") exists almost
everywhere on [0, 27) and moreover, if we designate lrmlu filre") as f(e")we
have f(e") &€ L’[0,27) and

If) =10 fCe") I, that is,
f has a member of H® which has the same norm as f(e") has as a member of
L*(0,2n). We define I'(f) = f(e").
That I” is one-to-one is clear from the norm preserving property of I"and that
the range of I" is closed is clear since a cauchy sequence in the range of I’
maps into a cauchy sequence in H’,

Theorem 3.5 H’ is perfectly seperable.

Proof. The proof that L°(0,27], 0 <p< 1, is seperable is practically the same
as the proof when 1 <p<oo,

As in the case in any metric space, seperability in L°[0, 22) implies perfect se-
perability. Whence, every subset of L*{0, 27} is likewise perfectly seperable.
Letting R(I") be the range of Theorem 3.4, we see that R(I) is perfectly
seperable. Since I' is a homeomorphism of H® onto R(I) then H’ is perfectly
seperable.

4, L.inear functional.

Although H’ is not normal in the case p<(1, its bounded linear functionals can
still be defined in the usual manner.
Thus a linear functionals f on H’ is said to be bounded if

I £l =Sup | f() | < co,
el =1

Since H’ is F-space even if p< 1, the principle of uniform boundness theor-
em still applies .. every pointwise bounded linear functional on H’ is uniformly

bounded. (See (1))
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Let A denote the class of functions analytic in | 2| <1 and continuous in
lz [S§1.
It is convenient to write f&€ 4, to indicate that f&A4 and its boundary function

f(e") belongs to Lipschitz class 4, 0<a=x 1.

Theoren 4.1 To each bounded linear functional ¢ on H, 0 <p< 1,
there corresponds a unique function g &€ A such that
1) () =limé (7f(re*) g (¢")db, fEH"
Proof. Given ¢& (H)* let b,=¢(z"), k=01 2+ .
Then
Fo, < gl-Nz"l=1¢l.
So, the function
g(z) =§' b, z"
is well-defined and‘:nalytic in | 2]<1.
Suppose now that
flz) = ga,z"EH'.
For fixed 0 <p< 1, let f,(z) =f(pz).
Since f, is the uniform limit on | 2| = 1 of the partial sums of its power se-
ries, and since ¢ is continuous, it follows that
#(f) =lim $($ a,p"2") =3 ab,p"
But f,—~f in H’ norm as p—1, so
@) $(N)=lim ¥ ab.p".
To deduse (1) from (2), it would suffices to show g&€H’,
But for fixed &, | §] < 1, let
flz (1 &2 "= 3 82"
Then by (2),

Hence
lgza) s heh A, SHN T (A—2) "],
that is, g €H . And uniqueness is trivial.
Theorem 4.2 IYn z& (H')*, n=0,1,2, 3+ ,lel <1, and
1

Il Yo,z| < A=

P'I‘ z
(pmz"~ I z‘ )HI(}-'npm:) v
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On the H® Space with 0 <P <1 5

where o, . =(| z| (1=p) +pn+ {[| 2| (1=p)+pn)'+dp |z | (pa+1)} D) /2 (pn+
.
Proof. We may assume that n>> 0 since the case where n= 0 is merely a
direct consequence of Theorem 3. 2.
Let | z| < p< 1. Then, by Cauchy’s integral formula for the derivatives of a
regular function we have
Y, () = (1/2m) (7 f(pe") pe” db/ (pe'” —2) """,
Whence, | 7,,,(f) | <(p/(p— | 2| )"". (I fl /(1—p")
by virtue of Theorem 3.2
Thus it is then clear that ¥, , &€ (H*)* and if |z| < p<1, then
Fr, 0 =p/(p—12])" (1-p)"
The final conclusion of our theorem is then obtained by minizing the function
/(o= 1z )" (1~ p)"”
on the interval | z| <p<1.
Corollary 1. There are countable collection of linear functionals {7,} on H°

having the property that if f€H" is not zero, then there exists n such that?9, () =0

Corollary 2. Suppose that F is a family of H” such that I(§) is bounded on
F for each fixed Y(H")* Then there exists M# 0 such that

(a) trnl sMiri,
(b) ‘j(Z) I ( l ')\/m
. Bz :
(C) ]rn-z(f) I éM{(_P,,,z vvvvv | I)hu(l p .g}’, 71,>O,

for all fe F

5. Main theorem

As in any normed linear space we say that the sequence {f,} €H’ converges
to fE€H®, written f,—*f 'in case
lim TU) = T()

for every Y& (H”)* where (H”)* is a class of linear functionals on H”.

Theorem 5.1 If f,—"fin H", then lim f,(2z) =f(z) uniformly on all compact

subsets of the unit circle.

Proof. Suppose Y(f)—Y(f) for all Y& (H*)* then {I(f.)} is bounded in for
each fixed Ye (H*)*, By Corollary 2, since | f,(z2) | sM/(1— ]| z|)"
[ fo(2)] SM/(1—-p)"" on | 2| € p<1,. Moreover, Yo, z(f,) =X, ,(f), or what is
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the same thing f,(2)—f(z) on | z]| < 1.
Thus, by Vitali’s theorem ,1&21 f.(2) =f(2) uniformly on all compact subsets of
| 2| <p, where p<1, and hence lim f,(z) = f(z) uniformly on all compact su-
bsets of | 2| < 1. s

Theorem 5,2 Suppose {f.} is a bounded sequence of elements of H® such that
1mT (f)=7T_,, (fp for all k=0, 1,2, .

Then }Ilm it z)=f(z) uniformly on all compact subsets of the unit circle.

Proof. Let&> (0 be given. Consider
L @=f) | = | ETu= D | S | E 0 lfi= N e |
+ | Z' wfimN2 ), 2] Sp<l
By Theorem 4‘2, we find that p,,=pk/ (pk+1), whence
I Y, s ((pk+1) /pk)" (pk+1)"".
It is easily verified that fj ((pk+1)/pk)". (pk+1)""p"
converges. h
We now choose N such that Mk§|((Pk"+1)/pk)k. (pk+1)"" p"< &/2, where M
is a bound on {| f,—fIl}.
Thus, since,

s (L= DL SIT L I = fII S M((pk+1) /pk+1) /pk) " (pk+1)7,
we find that | };. I, (f.—fz"| <€&/2. We now choose N such that n>N implies
| }__,'TK , (fa= N 2" | <&/2 for all z such that | 2| $p, as can well be accom-
phshed since I,,, (f,—)— 0 by hypothesis. Thus, indeed | f,{2z) —flz) | <€&/2

+&/2=¢€on | z| Sp for all n>N which concludes the proof of the theorem.
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