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Some Characterizations on Generic Submanifolds
of a Complex Projective Space

By Young-Jin Suh

§ O. Introduction

Let S be the unit hypersphere in a (m+ 1) —dimensional complex number

HE RSN

space C""' naturally identified with R It is, then, a principal circle bundle
over a complex projective space CP" and the Riemannian structure on CP" is g.
iven by the natural projection 7 : 8" "'—CP" that is defined by the Hopf-fibration
§'= 8"+ CP", which is the Riemannian submersion with totally geodesic fibres.

Since the model spaces M, .(a, b) =7 (8" (a) x 87" (b)) immersed in CP, where
(p,q) is some portion of m—1 and a’+b'=1, have been well known to us, many
authors have studied sufficient conditions and necessary and sufficient conditions
to be one of model spaces M, ,(a, b) (cf. Lawson {3), Maeda (4), Okumura
(51).

Recently these notions are mainly considered in the generic submanifolds or CR
-submanifolds of CP" by many authors (cf. Ki (2}, Kim (2], Kon (9], Pak (6],
Yano (9)). In particular, Pak and present author (cf. (7]} studied another nece-
ssary and sufficient conditions, which are concerned with the locally symmetry
of ¥ (M, .(a b)), to be one of model space M, .{a, b) by using the theory of
the Riemannian fibre bundles. The generalization of these facts to the generic
submanifolds of CP" is the purpose of this present paper. Thus, in this paper
we will discuss some necessary and sufficient conditions also concerned with the
locally symmetry and Ricci-parallel of S (r,)x -+ X8 (ry). And we will study some

pinching problems in the class of #(S$" (r,) X+ X S™(rs)) by using the following
Theorem A.

Theorem A. (Ki, Pak and Kim (2)) Let M be an n-dimensional complete ge-
neric submanifold of a complex projective space CP" with flat normal connection,

If the f-structure induced on M is normal and if the mean curvature vector is
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2 Young-Jin Suh

parallel in the normal bundle, then M is of the form
F(8"(r,) XX 8™(ry)), P, -+, Py are odd numbers
P+ P+ +Py=n+1, ri+ri4+Fri=1, N=2m—n+1,
where 8" (r)) is a P,—dimensional sphere with radius r,.
Manifolds, gometric objects and mappings we discuss in this paper are assume
to be differentiable and of C”. We will use the following system of indices in

this paper

oM, v, A=, 2 e J2mA1 0 hi k=12, ,2m,
a, By, 6=1,2, n+1 1 e b e, d=1,2, 0 , n,
w,ov,w, X,y =12, e ,p (ntp=2m)

The summation convention will be used with respect to those system indices.
§ |. Generic submanifolds of a compiex pro jective space.

As is well known, S  admits Sasakian structure {93 c%,b} and each
fibre #7'(x) of x&CP" is a maximal integral submanifold of the distribution span-
ned by & The base space CP" thereby admits the induced Kaehlerian structure
of constant holomorphic sectional curvature ¢=4. Thus, if we let CP" be cover-
ed by a system of coordinate neighborhoods {(_}Z y't and denote by g, compon-
ents of the Hermitian metric tensor and by F;/ those of almost complex struc-
ture of CP". Then we have

(1. 1) F\F;=—79, FFig.=gu
and denoting by [;J the operator of the covariant differentiation with respect to
gx, then we get

(1.2) g, Fi=0.

Let’s denote by K,.,' components of the curvature tensors of CP”,

The consistancy of the holomorphic sectional curvature of CP", then, gives
(1.3) K., '=8'g,—8,9.+FF,~F'F ~2F,F’.

Let M be an n-dimensional Riemannian manifold covered by a system of coordi-
nate neighborhoods {U: z°} and suppose now that it is immersed isometrically in
CP" by the following parametric equations

(1.4) ¥ =y (.

We put B'= 3y (8= 98/x.) and denote by C," p-mutually orthogonal unit normal

vector fields on M. Then the first fundamental tensor g. which is Riemannian

J . . .
metric of M is given by g.,= B. B, g, because the immersion is isometric.
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Some Characterizations on Generic Submanifolds of a Complex Projective Space 3

Denoting V, the operator of van der Waerden-Bortslotti covariant differentiation
with respect to g., then we have equation of Gauss and Weingarten

(1.5)  v.B/=A4.C/, v.C/=—A"B/
respectively, where A,, is the second fundamental tensors with respect to normals
C) and A=A, ¢"=A.,9"0u gn being the metric tensor of the normal bundle
of M given by g,,=C/C,g, and (") = (g,.) "

For a generic submanifold M of CP", we have equations of the form

(1.6)  F/B =f'B/+fC., F'C!=—f'B),
where f” is a tensor field of type (1,1) defined on M, £ that of mixed type and
fi=1g"g..

If we apply F, to (1.6) and use (1.1) and (1.6) itself, we may obtain

(L7 ffi==0,+flf, fifi=0, fFfi=0, fifi=30.
which means that the aggregate (£, f.. f.) is what we call f-structure
satisfying f+ f= 0.
Using the fact that F,=—F,, F,g.=F,, from (1.6) we have that
(1.8) Jo=—fo, Jee= fur
where we have put fo=/ " 0w, fo.=Ff gu and fo.=f. 0w

Applying the operator V,=B, 6" to (1.6) and using (1.2), (1.5),

we can easily verify that
(1.9) VS =ALS —ALS
(1.10) Vo fi=—AJf, VS =ALF, AJfI=ALS.

Since ambient manifold CP" has constant holomorphic sectional curvature 4,
using (1.3), then the structure equations of Gauss Codazzi and Ricci are res-
pectively given by

(L1 KW'=0.90= 0 g0+ 1. [ F S0 2fu S+ AL AT — ALAL

(1.12) VLA, = VA, = [ fof fu—2fu S

(1.13) Ko =fifo—ffut A A —ALAL,
where we denote K,. and K., by the components of the curvature tensors de-
termined by the induced metric fo and g, in M and in the normal bundle of M
respectively.

We now introduce a tensor field S of type {1,2) of the following form

St = fla+ (VA =V £ f
where (f. flo=f Y £ =V [~ (V. [ =9, £°) £ is the Nijenhuis tensor formed
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4 Young-Jin Suh

with f°. Moreover, when S, vanishes identically, the induced f— structure is

said to be normal. Thus, we may have the following.

Proposition 1.1 (See (2]) Let M be a generic submanifold of a Kaehlerian man-
ifold M. In order for the f-structure induced on M to be normal, ilis necessary
and sufficient the that second fundamental tensors A., and f° commute.

§ 2. Some properties concerned with the locally symmetry.

We consider a fibration 7 M—M which is compatible with the Hopf-fibration
n: 8""—CP", where M is an n-dimensional generic submanifold of CP" and M

=7 (M) is a generic submanifold of 8. More precisely speaking, 7: M— M
is a fibration with totally geodesic fibres such that the following diagram com-

mutative .

M — g™
(2.1) 1
M — cP"

where 7! M—S"" and i : M—~CP" are isometric immersions.
Now we will give an example that satisfies the above commutative diagram (2.

IRt

1). Consider the complex number space C which can be naturally embedded
as a totally geodesic sumanifold of C™™'. Then €' is identified with the product
space C7™Ix O X e X CVE D where p, bt py=nt 1, N=2m—n+1
If we denote 8" (r,) by a P,—dimensional sphere with radius r,, then it becomes
a hyperspere of C”"'""
space 8™ (r) x 8% (r,) X--x §(r,) of hyperspheres S"(r,) (i=1,-=-, N) may be
considered as a submanifold of ™" for ri+7r.+ +ry=1. On the other hand,

Yano and Kon (9] showed that 87 () X - x 8"(r,) is a generic submanifold of

Since ™" is the unit hypersphere of C™"', the product

S*™" with parallel mean curvature vector and flat normal connection. Clearly we
now have that #(8" (r) X e X 8™(ry)) projected by the compatible fibration =
is also an example of a generic submanifold which satisfies above commutative
diagram (2.1).

Let S be covered by a system of coordinate neighborhoods {U: y"} such
that 7(0)) =U are coordinate neighborhoods of CP" with local coordinate (y’).
Then we may represent the projection # by y' =y’ (y") and put E/= 84" (8,=0/
3y") with the rank of the matrix (E.) being always 2m. Let’'s denot by & com-

ponents of & the unit Sasakian structure of S induced from C"7. Then {E/
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Some Characterizations on Generic Submanifolds of a Complex Projective Space 5
g,,} becomes a local coframe in l;', where g,x ?ugu., being components of the
metric tensor on 8. If we define E% by (E", £ = (E] %x) " then {E%, &}
is a local frame in U, which is dual 1o {E,), é).

We now take coordinate neighborhr;ods{ijf 2 of ZVI such that n(l-,—/') = U are
coordinate neighborhoods of M with local coordinates (x2°). If we denote the im-
mersion / and submersion 7 by y*=y" (z) and x’=2"(z") respectively, then the
commutative diagram (3.1) implies that

B/E'—=EB, 2" B = B, E,
where E,'= 9,x" and B, = 9,5 Hence the Sasakian structure vector §is always
tangent to X’I

Putting by & components of € in a coordinate neighborhood {l}: £ of 1\2 we
may similarly obtain a local frame {E., £} and its dual coframe {E), §} in l_]
where &, is the associated vector field of & with respect to the metric tensors
9= §uxB B, of M.

Since the metrics §a on 8 and ¢. on M are invariant with respect to the
submersion # and 7 respectively, the van der Waerden-Borotolotti covariant der-
ivatives of E., E', and ES, E’, are respectively given by {cf. Ishihara and Konishi
(1)

(2.2)  DuE'=—F (Elé+E,E), WE, ~~F.,E;&+F E,

(2.3) V.E'=—f(ES&+EE)), V.E,=~fE &+[ LE]
where D, and V., denote the operators of covariant differentiations with respect
to g and g¢.. respectively. Moreover, equations of co-Gauss, of co-Codazzi and
of co-Ricei for the compatible submersion 7 are respectivelygiven by the follow-
ing forms

(2.4 K.'=K, —f S+ L ot 2l

(2.5) K. == (v.fu=V.[u),

(2.6) K. '=f.f)
where we have put

.77 K,'=K,'E’E .E ES,

(2.8) K, =K., EE.E,§ and

. N @ L .
2.9y K.'=K, ¢&E E &, K.. being components of the curvature tensor

of M and Kd,.,," being projectable local functions defined on {U: x".

vV . . . N am +1 .
When M is a locally symmetric space as a generic submanifold of §7°, taking
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6 Young-Jir Suh

covariant derivative V, to K,,"=K,,r E* E.E" E.," gives :
v.K,' =K, {(v.E) E.EE'+FE,(V.E) E*E'+E’,E. (V.E",) E.
+E,E.E,(V.E")}.
from which and using (2.3), (2.7) and (2.8) imply that
(2.10) VK, = (f K +f K.+ KK D&
— (fo K+ fo Ky A fu K £ K ) EE.

Transvecting & to (2.10) first and taking account of projectability of local fun-

ction K, that is(ZeK""=0, we may obtain

(2.11) SRS HIR S+ fIR —f R =0,
because we have used &=¢&B) and &E =0, &&= 1, Using (2.4) to (2.
11), then we easily get

(1) SR+ K K - K0
Next, transvecting E, to (2. 10) and making use of (1.9) and (2.5) to thus
obtained equation, consequently we f{ind

(o) o H S AV A A Lo ST+ S/ H VA A

= oS Lo TV A A S+ L9, 4,0 A= 0

where V. denote the operator of covariant differentiation with respect to  g.,.
Similarly also taking covariant derivative to (2.8) and making use of (2.3}, (2.5)
and (2.6)., we ecasily get

(2.12) oK. = (fSR. + TR+ [ RLDE.

— (oK, + S K~ o KV ES,

from which, transvecting E, and using (2.4), (2.6), we have

(M) fuefu = Lof o [l AL A~ AN AL) =YV, [, = VoV f
If we finally transvect (2.12) with &, then we may obtain

(V) frAL =0,
where we have used (1.9), (2.5) and the projectability of K,," because of
Zegafo=0.

For a real hypersurface M of CP", Maeda [4)] showed that a complete real
hypersurface M satisfying (I) and (V) is congruent to M, ,(a, b)=n(S"" (a)
X 8% (b)). Moreover, Pak and present author [7. proved that M satisfving
(II) and (N), or satisfying (I}, is also congruent to M, ,(a b). For this
paper we are now going to deal with these problems in a generic submanifold
of CP". Generic submanifold #{(S" () x---x S™(r,)) naturally satisfy the pro-
jected quantities (1), (I), (), and (V), .because 8" (r,) X+ x §¥(r,) men-
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Some Characterizations on Generic Submanifolds of a Complex Projective Space 7

tioned above can be considered as a locally symmetric submanifold of S§™7.
In this point of view, the converse problems such that the generic submanifold
M of CP" satisfying somewhat certain conditions of (1), (I}, () or (V) may
be congruent to m(S" (r,) x - x §™(7,)} will be oceured.

§ 3. Generic submanifald satisfying certain conditions.

First we now let M be a generic submanifold of CP" satisfying (I) and (V).

Then transvecting f, to {N) and using (1.7) gives that

(3.1) AL =PLS
where we have put
(3.2) P.l= AL S

From which and (1.10), we see that P,,.=P,.“g.. is symmetric for all indices.
On the other hand, using (1.11) to (I), then we get
(3.3) (S Awet /S Ad) A+ (fF At £7 Au) AL
— S At £ AL AL — ([T At f7 A) A= 0,
from which, transvecting f. and using (V) and (3.1), we find
PSS A +fE A = P £ (A A+ Aencf3) = 0,
from which, also transvecting f. and using (W), (1.7) and (3.1), we get
(3.4) Pl (ff At fiAw) = 0.
Now in this seciton we assume that generic submanifold M of CP" has flat
normal connection, then (1.13) implies that
[ o fa fut A AL~ ALSAS= O,
from which, transvecting f."fvo and taking account of (3.1), we then have
(3.5) 8.9~ 0.9,.,=P. P, —P."P. .
Thus, from (3.4) and (3.5) we have the following
([ At [ Ared) 90— (J At [ A gx= 0
Contracting the above equation with respect to y and 2z, we then have that the
induced f-structure on M is normel, that is, f At [ Ave=0 for codimension
p>1. When p=1, Maeda (4) proved those implications by using P. Cvector and
principal curvature for the real hypersurface M of CP". Hence we get following

by using Theorem A.

Theorem 3.1, Let M be an n-dimensional complete generic submanifold of a
complex projective space CP" with flat normal connection. If M satisfies (1)

and (V) and if the mean curvature vector is parallel in the normal bundle, then
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8 Young-Jin Suh

M is. of the form
#(S" (r,) XX 8%(r)), p,, e , P, are odd numbers= 1.
Next, if we let M be a generic submanifold satisfying (), then the certain
generic submanifold with this condition will be determined.
Making use of (1.9) to the right side of (I}, then (II) may be rewritten as
follows
(3.6) (A'fuut Alif) Aue— (A fert AL )
= (Ve e f7— (QeAe) fL 4SS uf S = fufed )
Transvecting f,” to (3.6) and making use of (1.7), we have
FEALh) Ase— (FLALTD) A= 15 (VoA ) 17— £ (9. Al £
from which, transvecting f* gives that
(3.7) ASALS =PI AL
where P, = P,ug"”¢"" and we have used (1.7) and skew-symmetry of f*,
symmetry of A, . Thus, if we transvect f, to (3.7), we find
(A5 (ASfS) = Py P
Hence taking account of this equation and using (1.7), (3.2), then we get
A fo—Pud fU1 7= 0.
Thus, it follows that A, fuw =Puwd f,* i. e., (3.1) holds.
On the other hand, taking skew-symmetry e and b, and using equation of Cod-
azzi (1.12), we may get
(3.8) (A’ fut AL LA~ (AN S+ ALS) AL
(A feut AL SN AT (A A A ) Al =
From which, transvecting f.'fu, and noticing (3. 1), (3.2), we geot
Pews (A fort A fo) = 0.
Therefore, we conclude that the structure tensor of M induced from CP" s
normal for p>1, since we have assumed that the normal connection of M is flat.
For the real hypersurface of this case, Pak and present author proved these im-
plications in the paper (7). Combining these facts and Theorem A, we also get
Theorem 3.2. Let M be an n-dimensional complete generic submanifold of a
complex projective space CP" with flat normal connection. If M satisfies (1) and
if the mean curvature vector is parallel in the normal bundle, then M is of the
form
#(S" (1) X x8™(r)), p, . p, are odd numbers=1,
p+p.+tp=ntl it dri=1, N=2m—atl1,
204



Some Characterizations on Generic Submanifolds of a Coniplex Projective Space 9

where S"(7,) is a p-dimensional sphere with radius r,.
§ 4. Some pinching problems concerned with parallel Ricci tensor.

Let’ s denote by K., the components of the Ricci tensor of 77 (M), where M
is a generic submanifold of CP". In this section we assume Ricei tensor is
parallel along #~ (M), i e, ¥.K..,=0. Now if we let K., be the horizontal local
function on {0 : x°}, then it is constant along each fibre FNU and can be ex-

pressed as such (See (1))

(4.1) K.=-K.E E.
If we apply the operator E;V,=V, to {4, 1) and make use of (2.3), we get
(V) v.K.=/f.K.+/.K,

where K, means that K,=K,, E* &
On the other hand, from (2.4) and (2.6) we find that
(4.2) R.=K.+2/°f,. K,=v,f"
where the Ricci tensor K, of M is given by
(4.3) K,=(n+2)g.,.—3f f.+AA —A A"
Then, substituting these equations into (V) and using (1.10), it follows
(4.4) VYV (—f fo+AA—A A=A ~P) (.1 +f.1")
where we have put A,=g¢" A, which is the mean curvature vector of M and
have put P,=P_ g~
Since it is natural that locally symmetric space should have parallel Ricci ten-
sor, we will discuss the converse problem which is related to projected quan-
tities (II) and (V). In this section we now suppose that M has parallel mean
curvature vector. Then using (1.10) to (4. 4), from which, applying f.” and
making use of (1.7) gives that
(4.5) AL+ A (v AN~ (VASDAL —AL (VAN
=(A,—~P.)f.
On the other hand, contracting a and d to the equation (II) gives
4.6) (LS HLSSHVADANA Lo f LS 9,4 A
— A o S STV ALT) =0
Transvecting f. to (4.6) and using (1.7), then we have
(4.7 A'Sf o+ (VADALL A+ LSS LSTH VAT AL
= A So— A (VA £ =0
Compbining (4.5) and (4.7) implies that
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10 Young-Jin Suh

(4.8) (AL L'+ AL+ LASS S =0.0
from which, taking skew-symmetric part e and ¢, then we get
fod A ST L AL = 0.
Thus transvecting fu to this equation, we easily get f,,A4,° f = 0.
Hence (4.8) reduces to A,.f. '+ A...f.'== 0 which shows that the structure tensor

is normal. Consequently, by using Theorem A it follows that

Theorem 4. 1. Let M be an n-dimensional complete generic submanifold of com-
plex projective space CP" with flat normal connection. If M satisfies (II) and
(N), and if the mean curvature vector is parallel in the normal bundle, then M
is of the form as stated in Theorem 3. 2. h

As a final remark, we are going to show that there dose not exist generic
submanifold with parallel Ricci tensor in the class of Z(S" (r) X x 8™Mr,)).
Thus we suppose that there exists a generic submanifold of #(8” (r,) X---x 8™
(r,)) with parallel Ricci tenor. Furthermore, its mean curvature vector is par-
allel in the normal bundle, because V, A ‘= —f f —f.f7 is well known equival-
ent condition to the normality of the structure tensor f,(See [6)) for the generic
submanifold of CP", Thus if we take covariant derivative to (4.3), then we get

BA LW ABA LSS = Lo LS A LSt ) AT
+ LA S ) A= 0.
from which, transvecting f, and using (1.7), normality of f, then we have
34,0 = Af LA A PSL= 0
From which, also using normality of f, we may find
(4.9) 2A S+ (A —-P)f,~= 0.
Applying f“ to (4.9) and making use of (1.7) and (3.2) imply A,=P,.
Hence using this fact, (4.9) reduces to
(4. 10) A S=0.
Taking covariant derivative to (4. 10) and using (1,9), we may get
(AN H AL AL AL =0,
from which, transvecting £’ and using (4. 10) imply
(4.11) VA= VAL
from which, transvecting with fu,
fo'V A=~/ 80,
which and (4.11) give £ f, = 0. Hence it follows that f, identically vanishes.
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Some Characterizations on Generic Submanifolds of a Complex Projective Space 11

This is a contradiction. Thus from above facts we have

Theorem 4.2. There does not exist a generic submanifold of CP" with paral-
lel Ricci tensor in the class of #(S" (r)) x---x 8™(r,)).
Classically it is well known that Einstein generic submanifold has parall Ricci

tensor, Thus from Theorem 4.2. we also get

Coroslary 4.3. There does not exist an Einstein generic sub manifold of CP" in

the class of %(S8” (r ) X+ x8™(r,)).
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