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A Submanifold of a Complex Space Form

By U-Hang Ki & Young-Ho Kim”*

§ 0. Introduction

In 1978, K. Yano and U-Hang Ki [ 7 ] studied the so-called ( f, g, u, v, w, A, u,
v)—structure induced on a submanifold of codimension 3 immersed in an almost
Hermitian manifold and found some conditions to admit the almost contact metric
structure on the submanifold. In 1980, Y. Tashiro and I.-B. Kim [ 5 ] general -
ized the notion of {(f, g w, v, w, A, g v)= structure, which is called the metric com-
pourd structure.

On the other hand, the present authors [ 6 ] examined submanifolds of a Kaehl-
erian manifold of constant holomorphic sectional curvature with the so-called almost
contact metric compound structure in the sense that the submanifolds admit the
almost contact metric structure,

The purpose of the present paper is to characterize submanifolds with the almost
contact metric compound structure immersed inan cven—dimenzsionalvEuclidean
space under some conditions.

We shall use the following theorem in order to examine the properties of subma-
nifolds admitring an almost contact metric compound structure immersed in a

Kaehlerian manifold of constant holomorphic sectional curvature c.

Theorem A ([ 5]). Let M be a submanifold of codimension | with the induced
almost contact metric structure(f, g. v. f)of an even— dimensional Fuclidean space
1(‘11

If the submanifold M satisfies one of the followings;

(1) M of dimension m >3 is umblical with respect to the distinguished normal N*

and N* parallel to the mean curvature vector,
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2 U-Hang Ki & Young-Ho Kim

(2) M of dimension m >3 is pseudo-umblical submanifold and the distinguished
normal N* parallel to the mean curvature vector,

(3) The distinguished normal N* is concurrent,

then M is the intersection of a complex cone with generator N* and an {n—1)~
dimensional sphere.

Manifolds, submanifolds and other geometric objects appeared in this paper are
assumed to be differentiable and of C*. We use throughout this paper the systems
of indices as follows :

A‘ B’ C,"':I,Z.”'. 2m : h,,i,j,---r—fl,Z,---,n
u Vv, WX, Y, 2=1%2% - p* nt+p=19n
(w), (v), (w), (x), (y), (2)=2%, -, p*.

The summation convention will be used with respect to these systems of indices.

§ 1. Preliminaries

Let 1\7 be a 2 m-dimensional almost }{QPIX\iTiall manifold covered by a system of
coordinate neighborhoods {l?;:r"} and (F, G) the almost Hermitian structure,
where F is the almost Hermitian metrc tensor of M. We denotes by F;} and Gy
components of F and G respectively. Then we have
(1. 1) ﬁ:?‘ Feﬂa - r\. F:-“FHLGMQ";‘ Grm
8. being the Kronecker delta.

If we put the covariant components of F as
(1.2) F.=F G,
then F.,is skew-symmetric with respect io the indices C and B.

Let M be an n-dimensional Riemamian manifold covered by a system of coordinate
neighborhoods {U:x"t and immersed isometrically in M by the immersion i.M— M
We idenfy i{M) with M itself and represent the immersion locally by
(1.3) xt= 2 (x").

We now put B/'=2ax'(a,=a/2x"). Then B;'are n hinearly independent vectors
of M tangent to M. And denote by C,' mutually orthegonal unit normal vector fields
of M. Then we have G.,B"C; =0 and the metric tensor of the normal bundle of
M is given by g.,= G ,C; C)=§_,. Therefore, vecior fields B and C,' span the
tangent space T,{M) of M at every point P of M. The metric tenisor g of M in-

duced from that of M is given by
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A Submanifold of A Complex Space Form 3

(1 4 ) 8= GCBBJCBL‘E
since the immersion is isometric.
The transforms of the tangent vectors B, and the normal vectors C;f to M by

F are expressed in the form

(1.5) F{Bf= fFB+ f*CS,

(1.6) F{C f=—fB/'+ fZCy,

where f are components of a tensor field of type (1, 1), f” those of 1-form
for each fixed x, f" vector field associated with f* given by fi= f?8"&ys, [
function for- fixed indices x and y. Putting fu=f"&"", fi== fP8yx. Jor= [ &ns
and fry=fF 82y, we can easily find

(1.7) Si=—fu, fix= frs, fes=—fra
Applying F to (1.5) and (1.6) respectively and using (1.1) and those expressi-

ons, we have

(1. 8) SHfe= =8I+ fFf2,
(1. 9) e+ f2=0, fxzfzi"}"fxy y=10,
(1 10) yZ z‘r: “33’1 '+'f.thtI~

The second equation of (1.1) and (1.4) imply
(1.11) [ S8 Bus™= Bu— Ji" fix-

Now, removing the almost Hermitian ambient manifold ﬁ, we suppose that an
n- dimensional Riemannian manifold M admits a metric tensor g, a tensor field
f." of type (1,1), p vector fields fi", p1l-forms f#* and p(p—1)/2 scalar fields
fx» satisfying the relationships (1.8)~(1.11). Such a set (f* g fi", f7) is
said to be a metric compound structure on M.

If we put
(1. 12) F=(f'h ~f"h) and  G= (%" 0 )

Sr Say -0 Oyx
then the set (F, G) defines an almost Hermitian structure in the product manifold
M x RF of the manifold M with a p-dimensional Euclidean space R’.
We suppose that M admits an almost contact metric compound structure. Then

we have

(1.13) Jifr=—8"+pip",
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¥ U-Hang Ki & Young-Ho Kim

(1. 14) fipe=0, flp'=0,
(1. 15) ppt=1

and

(1.16) Ji' [P 8= 8u—pip:,

where p, is a 1-form and p" vector field associated with p; given by p"=g"’p,
on M.

In this case we know that the dimension n of M is odd and the rank (f/) is
equal to n-1.

Comparing (1. 11) and (1. 16), we have

(1.17) S fix=psD0.
This equation shows that the product of the matrix (f/*) with its transpose is of
rank 1 and hence the matrix (f*) by itself is of 1.

Therefore, we may put

(1.18) fiF=v*pi,
where v* are certain scalar fields for each x.

Since f*fy=p;p’=1, we have

(1.19) vipe=1,

and hence (1.9) and (1.10) are reduce respectively to
(1.20) Svr=0, wfd=10

and

(1.21) S fe = = 8 vy vt

The equations (I.19)~ (1.21) form an almost contact metric structure on R® at
every point of M, and consequently we see¢ that the dimension p of R” is odd.
Conversely, assuming that an almost contact metric structure (f,*, & V*)on
R” is admitted, we can prove that the metric compound structure (f" g, f.*,
f¥*) induces an almost contact metric structure (f* & p*) on M.
Thus we have
Theorem B ( [ 51). Let (f*, g« Sf<". f5°) be a metric compound structure on
M. In order that f/ and g. constitute an almost contact metric structure (f.",
&, ") on M, it is necessary and sufficient that f,” and g, constitute an al-

most contact structure(f,*, &yx. v*) on R® at every point of M.
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A Submanifold of A Complex Space Form 5

From above discussions, we also have

Theorem C ( [ 5]) In order for a metric compound structure (f.", g, f*, f%)
to be almost contacl metric structure, it is necessary and sufficient that the
matrix (f;") is of rank 1, that is, the p vector fields f,* are all parallel to
one another.

A metric compound structure admitting an almost contact metric structure is
said to be an almost contact metric compound structure on M

A metric compound structure is said to be antinormal if the tensor field S,” of

type (1,2) defined by

(1.22) S,r= N+ (o f*—af™) fx"
satisfies
(1 23) S\iih"':z (_]“.v’xatfth"",flxafth)'

where N, is the Nijenhuis tensor formed with f.*, that is,

Nnh::.fj' B,ﬁ" ""'fitazth - H"%f.‘ o aif.,-t) f:h.

§ 2. Structure equations induced on a submanifold of an aimost Hermitian

manifold

In this section we assume that M is an n-dimensional submanifold of codimen-
sion p of an almost Hermitian manifold and admits an almost contact metric com-
pound structure (f*, gi, fo", [»*) and consequently (f/*, gu, p") defines an al-
most contact metric structure as shown in §1. The vector field N* defined by
(2. 1) Nt= v C,*
is unit normal t¢ M in M.

As to transforms of the tangent vectors B.* and the normal vector N* by the

almost complex structure tensor F, we have

(2. 2) F,BY= £ B +p.N",
(2.3) Fy*N*=—p'B,*
respectively because of (1.21), (1.23), (1.24) and (2. 1).
It is well known that the submanifold M of an almost Hermitian manifold M sa-
tisfying (2. 2) is so-called semi-invariant with respect to N* and N* is said to.

be the distinguished normal to M (cf. [ 4]).
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6 U-Hang Ki & Young-Ho Kim

We now take the distinguished normal N* as C*. Then we have from (2. 1)

v'*=1 and v¥=0. And consequently we find from (I.21), (1.23) and (1. 24)
(2.4) fr=p, Ju"=p",

(2.5) f*=0,

(2.6) Ji¥=0,

(2.7) S fir® = 0"

Therefore, (1.9) and (1.10) respectively reduce to

2. 8) FiBF= f!B+p.C",

(2. 9) E/C'=—p'B/,

(2.10) FiCu®= fiu® Co"

with the aid of (2.4), (2.5) and (2.6).
Denoting by ¥, the operator of van der Waerden- Bortolotti covariant differen-

tiation with respect to g, we have thé equations of Gauss for M in M
(2.11) ViBf= AnC*+ Au*Cy?,

where A, and A,/* are the second fundamental tensors with respect to C* and
Cx"* respectively, and those of Weingarten
(2.12) V.Cr=—A'B !+ 1,7 Cy*,
(2.13) ViCu'=— AluB" — L C* + Liy” Civ",
where A= g" A;, Al'n= A4:" 8y»w8"' = Auxg", 1;* and [y are the third fun-
damental tensors, l;. being given by L= 17”8y

Putting lig = Lix ¥ &z, we can easily find

Liwy ™= — bnz; ze

We now assume that the ambient manifold M is a Kaehlerian manifold, that is,
PF=0.

Differentiating (2. 8), (2,9) and (2, 10) covariantly respectively, and using
(2.11), (2.12) and (2.13), we find

(2. 14) V.fr=— Aup"+Alp,

(2. 15) Vo= — Anfd, V,ph=A'f",
(2. 16) Ad® [ = A” fE+ 17D,
(2.17) Anpt=—1"fs ",

(2.18) Vifn® = lin® fia® = fin® L™,

Transvecting (2. 16) with f,® and taking account of (2.7), we get
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A Submanifold of A Complex Space Form 7

(2.19) A= — A" [ ® fE— 12 fi P D,
from which,

(2 20) A=Z _— .__pl lt"mf(y,lz‘,

where we have put A% =g’ A,?.

If we transvect (2.19) with f.', then we find
e I T S R A

or, use (2.16),
An™ [ = LiZ pa= — Al fi* S fE~ 17 £ o ® Do

Taking the skew-symmetric part with respect to the indices { and h we obtain
= LEpat U pi=— L7 f® (W D= fipn),

from which, transvecting p’,

(2.21) St 1 =AY ot 1 fi)”

because of (2.7) and (2.20). Transvection [** yields

A% A% [+ L1 f® 4+ A% A% [ 54 L 1 9 = 0
with the aid of (2.20). Also, transvecting fi»* and using (2.7), we find
(2.22) (A A+ 17 1) — (A A+ LA 1) f fe =0,

Now we assume that the almost contact metric compound structure (f/, g, f&,

f5*) is antinormal. Then (1.23) reduces to
SE S =LV — (Vifl = Vif) f&+ (Vip— Vips) p*
=2p, Vip"—2p, V,p"
because of (2.4)~ (2.6). Substituting (2. 14) and (2. 15) into this, we obtain
(AT fE+fLAL) po— (ALFE+ fEAD) =0
with the aid of (1. 17), or, equivalently,
(Anifi—Aiky) p— (An fi—Aufi) p=0.
Transvection this with p* gives
Anif!— Asefn' = qnpi

for some covector g, is given by ¢,= — (A,p*') fi.

Taking the symmetric part of this with respect to the indices A and j, we find

gupst+ qupr=10.
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8 U-Hang Ki & Young-Ho Kim

Transvecting p’ to this, we see that g,=0 by its definition. Consequently we

have

(2. 23) Aufzt“‘ Az:f!l =3 ()
Thus, we get

Theorem?2.1. Let M be a semi-invariant submanifold with the distinguished no-
rmal C* admitting an almost contact metric compound structure immersed in a
Kaehlerian manifold M. Then in order for this structure to be antinormal, it
is necessary and sufficient that the second fundamental tensor A with respect lo

the distinguished normal and the structure temsor [ anticommute..
The equations of Gauss for M in a Kaehlerian manifold M are given by
(2. 24) K}c;‘ih‘_‘: K[;(:E{A BkDBjC B[BBhn *f" AkhA.u"" AJhAm'\L Ak’l<x;AJé\x o AJ‘h’,‘x"Aki‘l ,

where Kpcs' and Ki,* are the Riemann-Christoffel curvature tensors of M and M
» i
respectively, and we have put B*,= B’g" & s.
We now assume that the ambient manifold M is a Kaehlerian manifold of const-

ant holomorphic sectional curvature ¢, that is, its curvature tensor has the form
Kocs' = 5 (85 gea 8¢ Bun-t Fi' Feu F Fow—2 Fyc Fy).
Substituting this into (2.24) and using (1. 4) and (2.8), we find
(2. 25) Kut'=§ (8481~ 67 8urt [ o= I fu2 funf 1) + Ax As
— AP Arit A 0 AT — Ay A
Taking account of (2.8), (2.9), (2.10), (2.12) and (2. 13), we have also the

equations of Mainardi- Codazzi :

(2. 26) VA= Vs Axi— Ui Anl™ + Ly Axi™ = § (DS Difer—=2 Pifws),

(2.27) VA — Vi Ax® + 1S A L% At Ly ¥ A Ly T A7 =0

and those of Rica are given by

(2.28) Vilis— Vlim+ AL AT — AL AT Ly ™ 1 L M LY =0,

(2. 29) Vilie” ~ Vilsin” + Al A — Al A+l 17— L Y+ L2 Lye™
Ly Ly = %fuﬁx;‘”.
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A Submanifold of A Complex Space Form 9

§ 3. Some characterizations of submanifolds of a Kaehlerian manifold of const-
ant holomorphic sectional curvature ¢ admitting an almost contact metric
compound structure

In this section we assume that the metric compound structure induced on n-di-
mensional submanifold M of a Kaehlerian manifold M of constant holomorphic sec-
tional curvature ¢ defines an almost contact metric structure. Consequently (f/,
g, p*) defines an almost contact metric structure on M.

We now suppose that the submanifold M is umbilical with respect to the disting-
uished normal C#, that is,

(3 1) An:ﬂgn. A!x:(),

for some scalar field p. Then (2. 15) becomes Vip,= pf., which implies that
Ve Vi = (Vyo) frit 0 (8riDs— 8riDs)
with the aid of (2. 14) and (3.1). Taking account of the Ricci identity
— Kt Do = (Vup) fri— (Vip) fritp* (8rDi—BuDx),
from which, using the first Bianchi identity,
(Vep) fut (Vip) furt (Vip) fr=10.
From this we can see that p is a constant.
We now assume that the second fundamental tensor Ax* with respect to the
normal vectors C.' and the structure tensor f/ commute, that is
Al ft—fl Al =0,
or, equivalently,
(3.2) A fi+ AT =0
If we take the symmetric part of (2. 19) with respect to the indices j and @
and make use of (3.2), then we find
2A,:5 =~ (17"p+ 17 ps) f®.
Transvection this with p yields
L= (1" p") ps
because of (2.7) and (2.17). Since (2. 20) implies that [;* =0 because of (3.
1). And consequently

(3 3) A" =0.
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Thus, (2.26) reduces to
*Z— (pkfu—'pjfu“’z Pufri) =0,

which shows that ¢=0, that is, the ambient manifold M is an Euclidean space.

Combining these facts and Theorem A in § 0, we get

Theorem 3. 1. Let M be an n (>3) — dimensional submanifold admitting an al-
most contact metric compound siructureimmersed in an 2 m— dimensional Kaehler-
ian manifold M of constant holomorphic sectional curvature ¢. If M is umbilical
with respect to the distinguished normal C* and the second fundamental temsor
A with respect to the normal vector fields C* and the structure temsor fI

commute, then M is an intersection of complex cone with gemerator C* and a (m

—1) — dimensional sphere.

We now assume that the induced almost contact metric compound structure on

M is antinormal, We then have from (2. 23)
(3.4) Anfi—Aunfl=0.
Transvecting (3.4) with p’ and using (1. 17), we find
(Anp’) fi=0,
from which, transvecting fi,
Anp'=ap,

with the aid of (1. 16), where a is some function given by a== A.p’'p".

Transvection (3.4) with f gives

(3.5) A=a

because of (1, 16), where we have put A=A, g".

Therefore, we obtain

(3.6) Anpt= A p,.

Differentiating (3.5) covariantly and using (2. 15), we find

(Preds) ' — AL Ars [ = (T A) pr— AArSY,

from which, taking the skew- symmetric part in k and J,
HewAn®™ — bim Ape™ + ‘;” (pxfi—Difu—2pufi) {1 p'—2 AL Ans f2°
= (VeA) p,— (V,A) px

because of (2.25). Making use of (1.17), (1.18) and (2.17), we obtain
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(3.7) — 5 S 2 bew U Sy " —2 AL Ane = (Ve &) po— (7,A) D
Transvecting this with p’ and using (3. 6), we see that
VA= (p'V:A) pxt+2 lxn A™
because of (2.20). Thus, (3.7) reduces to
(3.8) — G S len 17 ™= AL Assfié+ A% (Luwpr— LinDs)
with the aid of (3.4). Transvecting this with f,* and using (1. 16) and (1, 17),

we get
T (8h= DD = Luia Lin S % fu* = A Avs (— 825+ Dap®)
+ A" fi¥ Lew s,

or, taking account of (2.21),

(3.9) AlAnt §8n=(An A"+ A+ §) Dapit L * A Dart Liw, L™
+ AT LY o wPos

which implies
And =L e A A AT L 1

with the aid of (2.20). Thus it becomes

(3.10)  lAu—Ap.plt=—(Awd®+ 2L o)+ 1410

because of (3.6).

We now suppose that the distinguished normal vector C* is parallel in the nor-
mal bundle, that is, ;=0 and c¢=0. Then, we see from (3. 10) that ¢=90
and An=0. If the submanifold M is minimal, then we can see from (2.25)~ (2.
29) and (3.10) that M is a submanifold of a (2m—1) - dimensional Euclidean
space E™!,

Hence we have

Theorem 3. 2. Let M be an n-dimansional minimal submanifold admitting an an-
tinormal almost contact metric compound structure of a 2 m-dimensional Kaehler-
tan manifold M of constant holomorphic sectional curvature c 20, If the disti-
nguished normal C* is parallel in the normal bundle, then M is a submanifold of

a (2m—1) - dimensional Euclidean space E*™'.

Now, we denote by K; = K,/ and K the Ricci tensor and the scalar curvature

of M respectively. Then we have from (2. 25)
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K= ZC H(n+2) 8,—3p,pd +AA,— A Ant An AT — A} o A,
from which

K= 4£ Hn+2) n—31+A4"— A, A"+ A, A" — 4,5 A’ 4.
Taking account of (2.19), (2.20)and (3.10), K becomes
B.11)  K=¢ (n=1) (n+4) = A7~ A"ppil + (A A™ — 17 '),
On the other hand, the following relationship holds :
(3.12) (Liop— Linp) (V¥ p'— 1'% p)

=2 Ly 1'% +2 Ap, fin)” A" frw™

=2 (Lyx 1" —Ax A)
because of (2.7) and (2.20). Hence (3. 11) reduces to
(3.13)  Kk=F (n=D)(n+4)—AF~A"Dp, 1"~ F ) Lin D Lun I,
If K27 (n—1)(nt+4), then we have
(3.14) AF=A"pp,  lwpi— LinD,=0.

We now suppose that the distinguished normal C* is parallel in the normal bun-
dle and ¢=0. Then we can see from (2.20), (3.10) and (3, 14) that

(3. 15) A= Ap,p., A =0 and c=0,
Thus (2. 12)and (2. 13) respectively reduce to

V,C*=—Ap,(p'By"), V.Cx'= 1" Cy"
because of I,;,=0. Since (2. 15) becomes
3.16) 7iph=0
because of (3. 15),a real hypersurface M, of M can be defined by the Pfaffian form
w=p,dx'. We assume that M, is covered by a system of coordinate neighborh-
oods {Us: €%}, where the indices a, b and ¢ run over the range 11,2, -, n—1}.
Let
7: M°~M be an isometric immersion represented by x*= " (£°). Putting
B)=08,Y" (2 = 9/ 8£%), then BS are 27 linearly independent vectors of M tan-
gent to M,. We now put
(3.17) B.'= Bi B/}, p*=p'Bl.
Then p* is a unit normal vector field orthogonal to C* and Cy*. In this case, we

can see that M, is a totally geodesic submanifold of a Euclidean space E*™ of
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dimension 2 m because of ¢=10. Consequently, M, is a (n—1) — dimensional pla-
ne E™' parallel along p*. Thus M is a cylindrical surface or a plane.

Hence we have

Theorem 3. 3. Let M be an n-dimensional submanifold admitiing an antinormal
almost contact metric compound siructure of 2m-dimensional Kaehlerian manifold
A? of constant holomorphic sectional curvature c= 0. If the scalar curvature K
satisfies K= 0 and the distinéuisguished normal C* is parallal in the normal bu-

ndle, then M is a cylindrical surface of a 2m-dimensional Euclidean space E*™.
Bibliography

[ 1] Blair, D.E., G.D. Ludden and K. Yano, semi- invariant immersions, Kodai
Math. Sem. Rep., 27 (1976), 313~ 319.

[2] Eum, S.S., U-Hang Ki, U. K. Kim and Y. H. Kim, Submanifolds of codimen-
sion 3 of a Kaehlerian manifold (11), J. Korean Math. Soc., 17 (1981), 211
- 228

{3 ] Chen, B.Y. and K. Yano, Pseduo-umbilical submanifolds in a Riemannian
manifold of constani curvature, Diff, Geo. in honor of K. Yano, Kinokuniya
Tokyo (1972), 61-7L

[4 ] Tashiro, Y., On relations between the theory of almost complex spaces and
that of almost contact spaces- mainly on semi- invariant subspaces of almost
complex spaces— ., Sugaku 16 (1964 — 1965), 54 -61.

[57] Tashiro, Y. and I.-B. Kim, On almost contact metric compound structure,
Kodai Math. J.,5 (1982), 13-29.

[6] U-Hang Ki and Y. H. Him, Submanifolds of a Kaehlerian manifold admitting an
almost contact meiric compound structure, to appear.

[71 Yano, K. and U-Hang Ki, On (f,&, u, v, w, A, g v) — structure satisfying
A+ 12+ v?*=1, Kodai Math. Sem. Rep., 29 (1978), 285-307.

Kyungpook National University
Taegu, Korea

195



