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A Note on the Zariski Rings

By Sam_—Tai Kim

§ O. Introduction

Let A be a commutative ring with identity and let B be a flat A~ algebra. If
for everv A—module M, the mapping ¥ ~~~~ 1 sz of M into My is injective,
where My= B> . M for an A—module M then B is said to be faithfully flat
over A,

A Noetherian topological ring in which the topology is defined by an ideal
contained in the Jacobson radical is called a Zariski ring.

In this paper. We shall prove that A is faithfully flat over A if and only if
A is a Zariski ring for the @ --adic topology where A is a Noetherian ring

and A the & —adic completion of A.

§ 1. Faithfully flat modules

Let f. A—- — B be a ring homomorphism and let ¢, b be ideals of A, B res-
pectively, then AS@®° and b2 b°¢ where @° is the extension of (fand b the con-
traction of b.

Furthermore, we know that &%= b and (%=,

Lemma 1.1 : Let S be a multiplicatively closed subset of a ring A and let
fi A= 87A be the natural ring homomorphism, defined by f(a)=a/1 for all a€ A
Then

i1} Every ideal in S A is an extended ideal.
(2)If ot is an ideal in A, then %= sUh (. s).

Henee @2°=(1) if and only if & meets 8.

Proof : (1) Let b be an ideal in 8 'A, and let z/s be an element of b Then
/1€ b, hence xE b and therefore x/s € 5%, Since 825 in any case it follows

that b= b°®
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(2) z€Q* =(87'A)°* <=>x/1=a/s for some a€qr, s&€ Se=>(x. s—1. a) t=0 for
some t€ Se=prsteqe=re (a5,

Lemma 1.2 Let A— B be a ring homomorphism and let P be a prime id-
eal of A. Then P is the contraction of a prime ideal of B if and only if Pe°

= P,

Proof: If P=Q for a prime ideal Q@ of B. then P® = Q%= Q°= P, Conversely,
if PP, let S be the image of A= P in B,

Then P®does not meet S, therefore by Lemma 1.1 its extension in S™B
is a proper ideal and hence is contained in a maximal ideal m of S B,
If Q is the contraction of min B, then Q is a prime ideal in B such that R=
P¢and QNS=¢.
Hence Q=P since S is the image of A~ P,

Definition 1,3 ; Liet f: A—B be a ring homomorphism and let N be a B-
module. Then N has an A-module structurce defined as follows | if ¢€ A and
& N then ax is defined to be fla)x.

This A—module is said to be obtained from N bv restriction of scalars.

Lemma 1.4 Let fI A= B be a ring homomorphism and let N be a B~modu-
le. Then the homomorphism g N=Ny defined by gly) = 1%y is injective and

Im(g) is a dircet summand of Ny where Ny= B+ N.

Proof . If g(y) =1 y=10 for some yEN, then y= 0 Hence g is  injective.
Now define pi Nue—=N by p(b<y) =by then p is surjective as a homomorphism.
Hence we have a short exact sequence 0—Ker(p) — Ny % N — 0, But
(pog) (y) =plgly) ) =p(1+~y). Therefore we have pog= 1y Hence the above se-
quence splits. Thus Ny=Ker (p) “Im(p) =Ker (p) “Im(g).

Proposition 1.5 Let f: A — B be a ring homomorphism and B a flat A-
algebra. Then the following conditions are oqlﬁx’al(\nt :

(i) a=a for all ideals ¢f of A.

(ii) % :Spec( B)— Spec(A) is surjective where Spec(A4) is the set of all prime
ideals of A.

(iii) For every maximal ideal m of A we have mf+#£i1)

(iv) If M is any non—zero A—module then My= B> ,M+# 0

{(v) For every A—module M, the mapping x~~r=s 1%z of M into My is in-
jective.
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Proof : (i)=> (ii) For every PESpec(A4), there exists QESpec (B) such that P=
Q" since P=Q" if and only if P*=Q by Lemma. 1.2,
(ii) = (iii) is clear since m® is a prime ideal of B.
(i) => {iv) Let x be a non—zero element of M and let
M’ =Ax. Since B is flat over A it is enough to show that M%% 0.
Define the homomorphism ¢! A—~+Ax by a vves ax for all a€ A,
then ¢ is surjective and M' =Axzx A/ for some ideal #(1) of A.
Thus M w=B% M’ = B%, A/0=B/0B=B/* but @< m for some maximal id-
eal m of A and @*= m®+#(1). Hence M s=B /(2 B/m*+ 0 .
fiv)=> (v) Let M’ be the kernel of M — M.
Since B is f{lat over A, the sequence
0—=+M p—>My— (My) s is exact.
But by Lemma 1.4, the mapping Mas— (M4 s is injective. Hence M s= 0  and
therefore M' = 0.

(v)=> (i) We take M= A/ for any ideal @ of A.

Definition 1.6 : Let B be a flat A—algebra.
If B satisfies one of the conditions of proposition 1.5, then B is said to be fa-

ithfully flat over A4,

§ 2. Completions

Let G be a topological abelian group and let U be any neighborhood of 0 in G.
Then U+a is a neighborhood of @ in G, and conversely, every neighborhood of
a appears in this form. Thus the topology of G is uniquelv determined by the
neighborhoods of 0 in G.

Assume that 0€ G has a countable fundamental system of neighborhoods. Then
the completion G of G is defined by the set of all equivalence classes of cauc-
hy sequences.

Hence G is an abelian group under addition of c¢lasses of cauchy sequences.

For each € G the class of the constant sequence (%) is an clement ¢(x) of
E} and ¢. G — Gis a homomorphism of abelian groups. In general, ¢ is not
injective.

We have Ker ¢=NU where U runs through all neighborhoods of 0 in G, and so

# is injective if and only if G is Hausdorff.
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Thus we have a sequence of subgroups

G=0G,=2 G,E ng J T T | G,,—:j

and UZ G is a neighborhood of 0 if and only if it contains some iG,l, in such to-
pologies the subgroups G, of G are both open and closed [see(1} and [3]].
Suppose (z,) is a Cauchy sequence in G. Then the image & of x, in G/G, de-
fines a coherent sequence (&) in the sense that 8, &, =& for all n, where
8. .G/G,., = G/G, is projection.

Thus G can equally well be defined as the set of coherent sequence (§,) with
the obvious group structure.
More generally, Consider any sequence of groups {A} and homomorphisms 6,,, :
A, — A.

We call this an inverse system, and the group of all coherent sequences (a,),
ie,a€A, and b,,, a,.. =a, is called the inverse limit of the system.

It is usually written A=lim A..

Pu——

With this notation we have
G=lim G/G,.
-

Proposition 2. 1:1f 0= {A,} = {B,}—={C,}— 0 is exact sequence ol inverse sy-
stems then

0 —+limA,—~limB,—1limC, is always exact,

If, moreover, {A,} is surjective system then

f—1limA,—1limB,—~limC,— 0 is cxact.

Proof : See((1]].

Vb

Corollary 2.2 Let 0 —G'—G—G —0 be an exact sequence of groups.. Let
G have the topology defined by a sequence {G,} of subgroups, and give G', G”
the induced topologies, i.e., by sequences {G'NG,H, {pG.}.

Then 0 —=G —=G—G"~ 0 is exact.
Proof . Since {G'/G’  NG,} is surjective system, We can apply proposition 2.1
to the exact sequence of inverse systems
0= {G" /G NGI—={G/G}—~+{G"/pG.t— 0
Hence 0 —lim G’'/G' NG, —lim G/G,~lim G"/pG,~— (} is exact, I e, 0—G —
- —— —

G—G"— 0 is exact.

Corollary 2.3: G, is a subgroup of G and G/G,=G/G,.
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Proof: We can apply Corollary 2.2 with G'= G,, then G”=G/G, has the dis-
crete topology so that G’ =G”.
Corollary 2 4 . é;é.

Proof | Taking inverse limits in the above corollary we-deduce lim é/én(i,::@);’
—

A

limG/ G, (= G).
—
Definition 2.5 l.et G be a group and let G be the completion of G. If ¢ G—

~

G is an isomorphiom, then G is said to be complete.

Definition 2.6 . Let & be an ideal of a ring A and M an A— module. A chain
M=M2M2M,2- 2M,2 , where the M, are submodules of M, is called an
— filtration of M if & M,=M,,, for all n, and a stable & —filtration of M if
o M,=M,.. for all sufficiently large n.

Proposition 2.7 . (Artin—Rees Lemma)
Let A bea Noetherian ring, ¢ an ideal of A, M a finitely-generated A— module
and (M,) a stable — filtration of M.

If M’ is a submodule of M,
then (M'NM,) is a stable &—filtration of M’".

Proof: See [[1]) and [2]].

§ 3. Main theorems

L.et A be a Noetherian ring, @ an ideal of A, M a finitely — generated A — mo-
dule and M’ a submodule of M.

Then by proposition 2.7 the @—adic topology of M’ coincides with the topology
induced by the @— adic topology of M.

Lemma 3. 1. 0 =M —+M—M""* 0be an exact sequence of finitely — generated
modules over a Noetherian ring A, Let (f be an ideal of A, then the sequence
of ¢~ adic completions.

0—=M —-M—M"—0 is exact.

Proof : {"M} is the fundamental system of neighborhoods of 0 and (@"MN
M’) is a stable (- filtration of M’ by proposition 2. 7. Consider the exact se-
quence of inverse systems

0—{M/'MNM} —~ {M/a’M} — {M"/pa"M}— 0

167



6 Sam-Tai Kim

then by corollary 2.2
0—=M —=M-=M'—0 is exact.
Lemma 3.2 : For any ring A, if M is a finitely - generated 4 —module, then
AoM— M is surjective.
If, moreover, A is Noetherian then A®O,M—M is an isomorphism.
Proof : If F=A", then we have A&,F=F.
Now assume M is finitely — generated so that we have an exact sequence 0 —N
—F—M-0
This gives rise to the commutative diagram
A <1K‘J4N—’/i®?F—-/iC€;uM—' 0
pop o b
0= N = F 5 M-o
in which the top line is exact and & is surjective by corollary.2.2. Since B is
an isomorphism this implies that @ is surjective.
Assume now that A is Noetherian then N is also finitely — generated so that y
is surjective and, by Lemma 3.1 the bottom line is exact. Hence @ is injective

by the four lemma. i.e, @ is an isomorphism,.

Lemma 3.3: If A is Noetherian, 4 its - adic completion, Then
D a=Aa=Ax,a;
2) (@)= @";
Rar/a =d/ad,

(4) ( is contained in the Jacobson radical of A.

—

Proof : (1) Since A is Noetherian, (7 is finitely — generated. Lemma 3.2 im-
plies that the map A, - (¥ whose image is Ao, is an isomorphism,
{(2) Now apply (1) to & and we deduce that (OZ")AWAU[Z(A@')H“ "
(3) Applying corollary 2.3 we now deduce A/"=A/H and A/ '=A/¥ ", by
taking quotients @'/l =/ =(A)" /()"
(4) By(2) and corollary 2.4, we see that A is complete for its #—adic topo-
logy. Hence for any x& @
(1-x) "=14+zta'+x'+ converges in A.
so that 1 —x is a unit in A,
This implies that @ is contained in the‘ Jacobson radical of A

Lemma 3.4 Let A be a Noetherian ring, ¢7 an ideal of A contained in the

Jacobson radical and let M be a finitely — generated A~ module and M the (- adic
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completion of M,

Then the & —adic topology of M is Hausdorff, i, e, NA'M=190.

Proof : Let ¢: M—M be the homomorphism.
Then we put E=Ker ¢= QM.

The induced topology on E coincides with its (— adic topology and @E is a
neighborhood in the (Z— adic topology. Therefore (?E= E and by Nakayama Lemma
E=0, ie, QA'M=0.

Hence the (—adic topology of M is Hausdorff.

Definition 3,5: A Zariski ring A is a Noetherian ring equipped with the @ -

adic topology such that & is contaived in the Jacobson radical of A.

Theorem 3.6 . Let A be a Noetherian ring, ¢ an ideal of A and A the a—adic
completion of A. Then Ais faithfully flat over A if and only if A is a Zariski
ring for the - adic topology.

Proof . Assume that A is faithfully flat over A.

Then by proposition 1. 5— (ii), theré exists P'E.S'pec(éi) with P"=m for any
maximal ideal m of A.

If m" is any maximal ideal of A containing P’ we have m” =m as m is a ma-
ximal ideal of A.

By Lemma 3.3, is contained in the Jacobson radical of A and hence @S m!

So we have
as(a)sm =m
Hence @ is contained in the Jacobson radical of A.
Conversely, let M be a finitely -~ generated A~ module and M the - adic com-
pletion of M.
Since (7 is contained in the Jacobson radical of A, by L.emma 3. 4, the z— adic
topology of M is Hausdorff,
e, NAM=0.
Therefore the mapping ¢ : M—M=A®M=M;
is injective since Ker ¢==OG’["M== () and by Lemma 3.2. Since we have known
that A is a flat A - algebra, by proposition 1.5~ (v},
A is faithfully flat over A,
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