A Note on the Zariski Rings

By Sam-Tai Kim

§ O. Introduction

Let A be a commutative ring with identity and let B be a flat A - algebra. If for every A - module M, the mapping $x \longrightarrow 1 \otimes x$ of M into M_B is injective, where $M_B = B \otimes_A M$ for an A - module M then B is said to be faithfully flat over A.

A Noetherian topological ring in which the topology is defined by an ideal contained in the Jacobson radical is called a Zariski ring.

In this paper. We shall prove that \hat{A} is faithfully flat over A if and only if A is a Zariski ring for the α -adic topology where A is a Noetherian ring and \hat{A} the α -adic completion of A.

§ I. Faithfully flat modules

Let $f: A \longrightarrow B$ be a ring homomorphism and let α , b be ideals of A, B respectively, then $\alpha \subseteq \alpha^{ec}$ and $b \supseteq b^{ce}$ where α^{e} is the extension of α and b the contraction of b.

Furthermore, we know that $b^c = b^{cec}$ and $\alpha^e = \alpha^{ece}$.

Lemma 1.1: Let S be a multiplicatively closed subset of a ring A and let $f: A \rightarrow S^-A$ be the natural ring homomorphism, defined by f(a) = a/1 for all $a \in A$. Then

- (1) Every ideal in $S^{-1}A$ is an extended ideal.
- (2) If α is an ideal in A, then $\alpha^{ec} = \bigcup_{s \in s} (\alpha; s)$. Hence $\alpha^{e} = (1)$ if and only if α meets S.

Proof: (1) Let **b** be an ideal in $S^{-1}A$, and let x/s be an element of **b**. Then $x/1 \in b$, hence $x \in b^c$ and therefore $x/s \in b^{ce}$. Since $b \supseteq b^{ce}$ in any case it follows that $b = b^{ce}$

(2) $x \in \alpha^{ec} = (S^{-1}\alpha)^c \iff x/1 = a/s$ for some $a \in \alpha$, $s \in S \iff (x, s-1, a) t = 0$ for some $t \in S \iff xst \in \alpha \iff x \in \bigcup_{s \in S} (\alpha; s)$.

Lemma 1.2: Let $A \longrightarrow B$ be a ring homomorphism and let P be a prime ideal of A. Then P is the contraction of a prime ideal of B if and only if $P^{ec} = P$.

Proof: If $P = Q^c$ for a prime ideal Q of B, then $P^{ec} = Q^{cec} = Q^c = P$. Conversely, if $P^{ec} = P$, let S be the image of A - P in B.

Then P^e does not meet S, therefore by Lemma 1.1 its extension in $S^{-1}B$ is a proper ideal and hence is contained in a maximal ideal m of $S^{-1}B$.

If Q is the contraction of m in B, then Q is a prime ideal in B such that $Q \cong P^e$ and $Q \cap S = \emptyset$.

Hence $Q^c = P$ since S is the image of A - P.

Definition 1.3: Let $f: A \rightarrow B$ be a ring homomorphism and let N be a B-module. Then N has an A-module structure defined as follows: if $a \in A$ and $x \in N$ then ax is defined to be f(a)x.

This A - module is said to be obtained from N by restriction of scalars.

Lemma 1.4: Let $f: A \to B$ be a ring homomorphism and let N be a B-module. Then the homomorphism $g: N \to N_B$ defined by $g(y) = 1 \otimes y$ is injective and $\operatorname{Im}(g)$ is a direct summand of N_B where $N_B = B \otimes_A N_A$.

Proof: If $g(y) = 1 \cdot y = 0$ for some $y \in N$, then y = 0. Hence g is injective. Now define $p: N_B \to N$ by $p(b \odot y) = by$ then p is surjective as a homomorphism. Hence we have a short exact sequence $0 \to \operatorname{Ker}(p) \to N_B \xrightarrow{p} N \to 0$, But $(pog)(y) = p(g(y)) = p(1 \odot y)$. Therefore we have $pog = 1_N$ Hence the above sequence splits. Thus $N_B = \operatorname{Ker}(p) \oplus \operatorname{Im}(p) = \operatorname{Ker}(p) \oplus \operatorname{Im}(g)$.

Proposition 1.5: Let $f: A \to B$ be a ring homomorphism and B a flat A-algebra. Then the following conditions are equivalent:

- (i) $\alpha^{ec} = \alpha$ for all ideals α of A.
- (ii) ${}^{a}f:Spec(B) \rightarrow Spec(A)$ is surjective where Spec(A) is the set of all prime ideals of A.
- (iii) For every maximal ideal m of A we have $m^e \neq (1)$
- (iv) If M is any non-zero A-module then $M_B = B \otimes_A M \neq 0$
- (v) For every A-module M, the mapping $x \longrightarrow 1 \otimes x$ of M into M_B is injective.

Proof: (i) \Rightarrow (ii) For every $P \in Spec(A)$, there exists $Q \in Spec(B)$ such that $P = Q^c$ since $P = Q^c$ if and only if $P^{ec} = Q$ by Lemma. 1.2.

- (ii) \Rightarrow (iii) is clear since m^e is a prime ideal of B.
- $(iii) \Rightarrow (iv)$ Let x be a non-zero element of M and let

M' = Ax. Since B is flat over A it is enough to show that $M'_B \neq 0$.

Define the homomorphism $\phi: A \rightarrow Ax$ by $a \leftrightarrow ax$ for all $a \in A$.

then ϕ is surjective and $M' = Ax \cong A/\alpha$ for some ideal $\alpha \neq (1)$ of A.

Thus $M'_B = B \otimes_A M' \cong B \otimes_A A/\alpha \cong B/\alpha B \cong B/\alpha^e$, but $\alpha \subseteq m$ for some maximal ideal m of A and $\alpha^e \subseteq m^e \neq (1)$. Hence $M'_B = B/\alpha^e \supseteq B/m^e \neq 0$.

(iv) \Rightarrow (v) Let M' be the kernel of $M \rightarrow M_B$

Since B is flat over A, the sequence

$$0 \rightarrow M'_B \rightarrow M_B \rightarrow (M_B)_B$$
 is exact.

But by Lemma 1.4, the mapping $M_B \rightarrow (M_B)_B$ is injective. Hence $M'_B = 0$ and therefore M' = 0.

 $(v) \Rightarrow (i)$ We take $M = A/\alpha$ for any ideal α of A.

Definition 1.6: Let B be a flat A-algebra.

If B satisfies one of the conditions of proposition 1.5, then B is said to be faithfully flat over A.

§ 2. Completions

Let G be a topological abelian group and let U be any neighborhood of 0 in G. Then U+a is a neighborhood of a in G, and conversely, every neighborhood of a appears in this form. Thus the topology of G is uniquely determined by the neighborhoods of O in G.

Assume that $0 \in G$ has a countable fundamental system of neighborhoods. Then the completion \hat{G} of G is defined by the set of all equivalence classes of cauchy sequences.

Hence \hat{G} is an abelian group under addition of classes of eauchy sequences.

For each $x \in G$ the class of the constant sequence (x) is an element $\phi(x)$ of \hat{G} and $\phi: G \to \hat{G}$ is a homomorphism of abelian groups. In general, ϕ is not injective.

We have Ker $\phi = \bigcap U$ where U runs through all neighborhoods of θ in G, and so ϕ is injective if and only if G is Hausdorff.

Thus we have a sequence of subgroups

$$G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_n \subseteq G_n \subseteq G_n \subseteq G_n \supseteq G_n \supseteq G_n \supseteq G_n \subseteq G_n \supseteq G_n \supseteq G_n \subseteq G_n \supseteq G_n \subseteq G_n \supseteq G_n \subseteq G_n \subseteq G_n \subseteq G_n \supseteq G_n \subseteq G_n \supseteq G_n \supseteq G_n \supseteq G_n \subseteq G_n \subseteq G_n \supseteq G_n \subseteq G_n \supseteq G_n \subseteq G_n \subseteq G_n \supseteq G_n \subseteq G_n \subseteq G_n \subseteq G_n \subseteq G_n \subseteq G_n \supseteq G_n \subseteq G_$$

and $U \subseteq G$ is a neighborhood of 0 if and only if it contains some G_n , in such topologies the subgroups G_n of G are both open and closed (see[1] and [3]).

Suppose (x_{ν}) is a Cauchy sequence in G. Then the image ξ_n of x_{ν} in G/G_n defines a coherent sequence (ξ_n) in the sense that θ_{n+1} $\xi_{n+1} = \xi_n$ for all n, where $\theta_{n+1}: G/G_{n+1} \to G/G_n$ is projection.

Thus \hat{G} can equally well be defined as the set of coherent sequence (ξ_n) with the obvious group structure.

More generally, Consider any sequence of groups $\{A_n\}$ and homomorphisms θ_{n+1} : $A_{n+1} \rightarrow A_n$

We call this an inverse system, and the group of all coherent sequences (a_n) , i.e., $a_n \in A_n$ and θ_{n+1} $a_{n+1} = a_n$, is called the inverse limit of the system.

It is usually written $\hat{A} \cong \lim A_n$.

With this notation we have

$$\hat{G} \cong \lim_{\longleftarrow} G/G_n$$
.

Proposition 2.1: If $0 \to \{A_n\} \to \{B_n\} \to \{C_n\} \to 0$ is exact sequence of inverse systems then

$$0 \longrightarrow \lim_n \longrightarrow \lim_n \longrightarrow \lim_n C_n \text{ is always exact,}$$
 If, moreover, $\{A_n\}$ is surjective system then

$$\theta \rightarrow \lim_{n} A_n \rightarrow \lim_{n} B_n \rightarrow \lim_{n} C_n \rightarrow 0$$
 is exact.

Proof: See [[1]].

Corollary 2.2: Let $0 \to G' \to G \to G'' \to 0$ be an exact sequence of groups. Let G have the topology defined by a sequence $\{G_n\}$ of subgroups, and give G', G''the induced topologies, i.e., by sequences $\{G' \cap G_n\}$, $\{pG_n\}$.

Then
$$0 \to \hat{G}' \to \hat{G} \to \hat{G}'' \to 0$$
 is exact.

Proof: Since $\{G'/G' \cap G_n\}$ is surjective system, We can apply proposition 2.1 to the exact sequence of inverse systems

$$0 \to \{G'/G' \cap G_n\} \to \{G/G_n\} \to \{G''/pG_n\} \to 0$$

Hence $0 \to \lim_{n \to \infty} G'/G' \cap G_n \to \lim_{n \to \infty} G/G_n \to \lim_{n \to \infty} G''/pG_n \to 0$ is exact, i.e., $0 \to \hat{G}' \to 0$ $\hat{G} \rightarrow \hat{G}'' \rightarrow 0$ is exact.

Corollary 2.3: \hat{G}_n is a subgroup of \hat{G} and $\hat{G}/\hat{G}_n \cong G/G_n$.

Proof: We can apply Corollary 2.2 with $G' = G_n$, then $G'' = G/G_n$ has the discrete topology so that $\hat{G}'' = G''$.

Corollary 2.4: $\hat{G} \cong \hat{G}$.

Proof: Taking inverse limits in the above corollary we deduce $\lim_{n \to \infty} \hat{G}/\hat{G}_n (\cong \hat{G}) \cong \lim_{n \to \infty} G/G_n (\cong \hat{G})$.

Definition 2.5: Let G be a group and let \hat{G} be the completion of G. If $\phi: G \rightarrow \hat{G}$ is an isomorphism, then G is said to be complete.

Definition 2.6: Let α be an ideal of a ring A and M an A-module. A chain $M = M_n \supseteq M_1 \supseteq M_2 \supseteq \cdots \supseteq M_n \supseteq \cdots$, where the M_n are submodules of M, is called an α -filtration of M if α $M_n \subseteq M_{n+1}$ for all n, and a stable α -filtration of M if α $M_n = M_{n+1}$ for all sufficiently large n.

Proposition 2.7: (Artin-Rees Lemma)

Let A be a Noetherian ring, α an ideal of A, M a finitely-generated A-module and (M_n) a stable α -filtration of M.

If M' is a submodule of M,

then $(M' \cap M_n)$ is a stable α -filtration of M'.

Proof: See [[1] and [2]].

§ 3. Main theorems

Let A be a Noetherian ring, α an ideal of A, M a finitely-generated A-module and M' a submodule of M.

Then by proposition 2.7 the α -adic topology of M' coincides with the topology induced by the α -adic topology of M.

Lemma 3.1: $0 \to M' \to M \to M'' \xrightarrow{p} 0$ be an exact sequence of finitely—generated modules over a Noetherian ring A, Let \mathcal{A} be an ideal of A, then the sequence of \mathcal{A} -adic completions.

$$0 \rightarrow \hat{M}' \rightarrow \hat{M} \rightarrow \hat{M}'' \rightarrow 0$$
 is exact.

Proof: $\{\alpha^n M\}$ is the fundamental system of neighborhoods of 0 and $(\alpha^n M \cap M')$ is a stable α - filtration of M' by proposition 2.7. Consider the exact sequence of inverse systems

$$0 \to \{M'/\alpha^n M \cap M'\} \to \{M/\alpha^n M\} \to \{M''/p\alpha^n M\} \to 0$$

then by corollary 2.2

$$0 \rightarrow \hat{M}' \rightarrow \hat{M} \rightarrow \hat{M}'' \rightarrow 0$$
 is exact.

Lemma 3.2: For any ring A, if M is a finitely-generated A-module, then $\hat{A} \otimes_A M \to \hat{M}$ is surjective.

If, moreover, A is Noetherian then $\hat{A} \otimes_A M \to \hat{M}$ is an isomorphism.

Proof: If $F \cong A^n$, then we have $\hat{A} \otimes_A F \cong \hat{F}$.

Now assume M is finitely-generated so that we have an exact sequence $0 \rightarrow N$ $\rightarrow F \rightarrow M \rightarrow 0$

This gives rise to the commutative diagram

in which the top line is exact and δ is surjective by corollary. 2.2. Since β is an isomorphism this implies that α is surjective.

Assume now that A is Noetherian then N is also finitely-generated so that γ is surjective and, by Lemma 3.1 the bottom line is exact. Hence α is injective by the four lemma. i.e., α is an isomorphism.

Lemma 3.3: If A is Noetherian, \hat{A} its α -adic completion, Then

- $(1)\,\hat{\alpha} = \hat{A}\alpha \cong \hat{A}\otimes_{\scriptscriptstyle{A}}\alpha;$
- $(2) (\alpha^n)^{\hat{}} = (\hat{\alpha})^n;$
- $(3) \, \Omega^n / \Omega^{n+1} \cong \widehat{\Omega}^n / \, \widehat{\Omega}^{n+1} \; ;$
- (4) $\hat{\alpha}$ is contained in the Jacobson radical of \hat{A} .

Proof: (1) Since A is Noetherian, α is finitely-generated. Lemma 3.2 implies that the map $\hat{A} \otimes_A \alpha \to \hat{\alpha}$ whose image is $\hat{A} \alpha$, is an isomorphism.

- (2) Now apply (1) to α^n and we deduce that $(\alpha^n) = \hat{A}\alpha^n = (\hat{A}\alpha)^n = (\hat{\alpha})^n$
- (3) Applying corollary 2.3 we now deduce $A/\partial t^n \cong \hat{A}/\partial t^n$ and $A/\partial t^{n+1} \cong \hat{A}/\partial t^{n+1}$, by taking quotients $\partial t^n/\partial t^{n+1} \cong \hat{d}t^n/\partial t^{n+1} = (\hat{d}t)^n/(\hat{d}t)^{n+1}$.
- (4) By(2) and corollary 2.4, we see that \hat{A} is complete for its $\hat{\alpha}$ -adic topology. Hence for any $x \in \hat{\alpha}$

$$(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots$$
 converges in \hat{A} .

so that 1-x is a unit in \hat{A} .

Lemma 3.4: Let A be a Noetherian ring, α an ideal of A contained in the Jacobson radical and let M be a finitely-generated A-module and \hat{M} the α -adic

completion of M.

Then the α -adic topology of M is Hausdorff, i.e., $\bigcap \alpha^n M = 0$.

Proof: Let $\phi: M \rightarrow \hat{M}$ be the homomorphism.

Then we put $E = \operatorname{Ker} \phi = \bigcap \alpha^n M$.

The induced topology on E coincides with its α -adic topology and αE is a neighborhood in the α -adic topology. Therefore $\alpha E = E$ and by Nakayama Lemma E = 0, i, e., $\Omega \alpha^n M = 0$.

Hence the α -adic topology of M is Hausdorff.

Definition 3.5: A Zariski ring A is a Noetherian ring equipped with the α -adic topology such that α is contained in the Jacobson radical of A.

Theorem 3.6: Let A be a Noetherian ring, α an ideal of A and \hat{A} the α -adic completion of A. Then \hat{A} is faithfully flat over A if and only if A is a Zariski ring for the α -adic topology.

Proof: Assume that \hat{A} is faithfully flat over A.

Then by proposition 1.5—(ii), there exists $P' \in Spec(\hat{A})$ with $P'^c = m$ for any maximal ideal m of A.

If m' is any maximal ideal of \hat{A} containing P' we have m'' = m as m is a maximal ideal of A.

By Lemma 3.3, $\hat{\alpha}$ is contained in the Jacobson radical of \hat{A} and hence $\hat{\alpha} \subseteq m'$. So we have

$$\alpha \subseteq (\hat{\alpha})^c \subseteq m^{\prime c} = m.$$

Hence α is contained in the Jacobson radical of A.

Conversely, let M be a finitely-generated A-module and \hat{M} the α -adic completion of M.

Since α is contained in the Jacobson radical of A, by Lemma 3.4, the α -adic topology of M is Hausdorff,

i. e.,
$$\bigcap_{n} \alpha^{n} M = 0$$
.

Therefore the mapping $\phi: M \rightarrow \hat{M} \cong \hat{A} \otimes_{A} M = M_{\hat{A}}$

is injective since $\operatorname{Ker} \phi = \bigcap_{n} \alpha^{n} M = 0$ and by Lemma 3.2. Since we have known that \hat{A} is a flat A-algebra, by proposition 1.5-(v).

 \hat{A} is faithfully flat over A.

References

- [1] M. F. Atiyah and L. G. Macdonald: Introduction to commutative Algebra, Addison-Wesley (1969)
- [2] M. Nagata: Local Rings, Robert E. Krieger publishing Company (1975)
- [3] O. Zariski and P. Samuel: Commutative Algebra Vol II, Springer Varlag (1958)