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Decomposition in Noetherian Rings

By Byung-In Yang & Yeong-Chul Kim

1. INTRODUCTION

The topic treated in this paper is an attempt to simulate in a noncommutative
Noetherian ring the Lasker- Noether primary decomposition in a commutative No-
etherian ring, For a large part, the results we shall give are due to Lesieur and
Croisot,

A decomposition is given for an arbitrary left module as an intersection of spe-
cial left modules -tertiary module~ and we could hope that this would be a suitable
vehicle for a profound study of noncommutative Noetherian rings and modules over
noncommutative Noetherian rings.

All rings R to be considered will be Noetherian and will have unity. All modules
M will be unital, finitely generated left R- modules, For any me€ M, a€ R and
submodule N of M, we denote by {m) the submodule of M generated by m € M,
by (a) the two- sided ideal of R generated by a€ R, by (N: (a)) ={ me M|
(a)(m) SN}, and by OM)=1{ a€RlaM=(0)}. Note (N: (a)) is a sub-

module of M containing N.

2. TERTIARY RADICAL OF MODULES

DEFINITION 1. If N is a submodule of M, then the primary radical of N, wri-
tten rad(N), is the intersection of all prime ideals. of R which contain O(M/N).
N is a primary submodule of M if all elements a € R, such that for some submo-
dule K of M with N< K (not equal), aKC N, are in rad(N).

DEFINITION 2. The tertiary radical i-rad (N) of a submodule N of M (or an ideal
N of a nonassociative ring R =M) is the set t-rad (N)={ae Rl (N: (a)N(m)
CN=>me N, for all me M} .

REMARK. For any ring, if m€ rad (N), then m"€ O(M/N) for some integer K

since the intersection of all prime ideals is a nil ideal ((4., p. 56, Proposition 1)].
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Thus if m € rad (N), then m" € t-rad (N) for some integer h.

PROPOSITION 1. (a). If N is a proper submodule. of M, and a € t-rad (N),
then (N: (a)) DN (not equal),
(b). If A is an ideal of R, AC t-rad(A).

Proof. (a). If (N: (a)) =N, and a € t-rad (N), then for all me M, (N: (a))
N {(m)=NN (m) CN. Hence m& N, Therefore M=N, a contradiction.
(b). Let a€ A. Then {A: (a))=R Hence for all be R (A: (a))N{®) € A4
implies (b) © A and so b€ A Therefore a € t-rad(A4).

LEMMA 2. Let N be a submodule of M. If a,, -+ , 8, € t-rad (N), then given
meM m&N, there is an $€ (m), s¢& N such that a, R§ & N for i=1,2, ---,n

Proof. Let @ € t-rad (N). Then by definition of t-rad(N), for all mEM, m ¢
N, there exists 7€ (m), 7 & N such that aRT* S N. So ifn=1, this is obvi-
ous. Suppose then that we: have found a t € (m), t & N such that a, Rt &€ N for
p==1, 2, , n— 1. Since a,€ t-rad(N), there is an s€ (1) & (m), SEN
such that a,Rs & N. However for i <n, a,Rs<a, Rt N Thereby the lemma

is proved.

THEOREM 3. For any submodule N of M, t-rad(N) is a twosided ideal of R

Proof. For any a,, a, € t-rad (N), by lemma 2, given m€ M, m & N, there isan
s€ (m), s¢& N such that 8, RSC N, a, RsC N. Thus (a,—a;) RsCN.
Therefore, by definition of t-rad (N), a,—a,€ t-rad(N).

For any r€ R, (ar) C (a) and (ra) S (a). So (N: (ar)) 2(N: (a)) and
(N: (ra)) 2(N: (a)). Thus if a € t-rad (N), since (N: (ar)) N (m) SN im-
plies (N: (a)) N (m) &N, then ar € t-rad (N), ra € t- rad (N).

COROLLARY 4. Let I=t-rad(N), given m& N, there is an 8 € (m) such that
s¢&N, ISCN.

Proof. Since R is Noetherian and [ is an ideal of R, I=Ra,+ -+ -+ Ran, for
some appropriate a; € I By the lemma2, pick s € (m), s € N such that a,Ss €N
for i=1, 2, ==+, n. Thus IsCTN.

COROLLARY 5. Let I=t-rad (N) and let N*={ me M|ImCN}. Then Nis a
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proper submodule of N*

Proof, Since I is a two- sided ideal of R, N* is a submodule of M. Clearly N*
2 N. By corollary 4, we can find s € N such that IsC N, Since s€ N* s¢ N N

is a proper submodule of N*

LEMMA 6. Let N, N, be submodules of M. Then t-rad(N,J N t-rad(N;) ©
t-rad (N, N N,).

Proof. Let a € t-rad(N,) N t-rad (N,) and let m € M such that (NN, © (a))
N (m) SN, N, Since (NN N, 1 (a)) = (N1 (a)) N (N D (a)), NN EN,,
and a € t-rad(N,), by definition of t-rad(N,) applied o (N,: (a)) N (m), it
follows that (N, : (a)) N (m) SN, so (N, : (a)) N (m) S (N,: (a)). Hence (N,
NN > (a)) N (m)=(N:(a)) V(N> (a)) D (m)=(N,: (a)) "N (m).
Thus (N,: (@) N (m) ENNN,EN,. Since a € 1-rad(N,), mE N,.
Similarly m € N,. Therefore mE€N, M N,, i.e. a € t-rad (N, N,).

3. TERTIARY MODULES

DEFINITION 3. Let N be a submodule of M. We call N a tertiary submodule of
Mif (a)(m) TN, m&N= a€ t-rad(N).

DEFINITION 4. Let N be a tertiary submodule of M. If the prime ideal P of R
is t-rad(N), then we say that N is P-lertiary and that P is the prime ideal of
N.

LEMMA 7. Let N be a tertiary submodule of M, Then P= t-rad(N)is a prime
ideal of R, i.e. N is t-rad (N) - tertiary.

Proof. Since N*% N and by lemma 2, there exists an mE€ M, m& N such that
for all a€ P, (a)(m) €N. Since N is tertiary, P consists of all elements a €
R such that (a)(m) C N, Suppose x, yE€ R, (x)(y) S P, then (x)(y)(m) <
N If y& P then (y)(m) € N. So by definition of t-rad(N), x€ P. Therefore

P is prime,.

PROPOSITION 8 Let P be an ideal of R and N proper submodule of M.
Suppose i) PCt-rad(N), and
ii) (a)(m)CN, mgN=>ac P, for all a€R, meEM.
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Then N is P-tertiary.

Proof. Since i) PC t-rad(N) and ii) (a)(m) CN, m& N=>a€ PC t-rad(N),
for all a€R, mE.M, ‘N is tertiary. For each a € t~rad (N), by proposition 1-
(a), there exists 8€ (N: (a))—N. Then (a)(s) &N and s¢ N. Hence by
ii) a€ P. Thus, with i), P=t-rad (N).

PROPOSITION 9. Let N, and N, be P-tertiary submodules of M. Then N,N N,
is P-tertiary.

Proof. Let N=N,NN,. If (a){m) €N, m¢& N, without loss of generality, m &
N,, then since (a)(m) €N,, a€ P=t-rad(N,). By lemma 6, P=t-rad(N,)
N t-rad (N,) € t-rad (NN N,) =t -rad (N). By proposition 8, N is P-tertiary.

4. DECOMPOSITION OF MODULES

DEFINITION 5. A submodule N of M is called jrreducible module if it is not the

intersection of two strictly large submodules of M,

DEFINITION 6. A representation N= N, -+~ N N, of a submodule N of M as
the intersection of tertiary submodules N, of M is said to be irredundaent if no N,
contains the intersection of N, s. j51i.

The representation is said to be reduced if it is irredundant and the t- rad(N;)

#1-rad (N)), i#j.
PROPOSITION 10. Every irreducible module is tertiary,

Proof. If N is not tertiary module, then there exists an a & t-rad(N), m&N
such that (a)(m) € N. Since a€ t-rad (N), there is a t ¢ N with (N: (a)) N
(1) ©N. Since NS (N: (a)), and the lattices of modules of M is modular, N=
(N: (a)) N ((z) +N). But (a)(m)E N, m&N, so NQ:- (N: (a)), and since t
&N, NG (t) +N. Therefore N is not irreducible,

LEMMA 11. Every submodule of M is the intersection of finitely many irreducible

modules.

Proof. Let & be the family of all submodules of M which are not expressible as
the intersection of finitely many irreducible modules. Suppose & isnot empty.

Then there exists a maximal element N of &. Then N= AN B for some submodu-
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les A, B of M such that NG A and NG B. So A¢ 7 and B¢ 5. Therefore A
and B are expressible as the finitely many irreducible modules. It follows that N
is expressible as the finitely many irreducible modules, ie. N&5, a contradic-

tion,
COROLLARY 12, Every submodule of M has the reduced representation.
Proof. By lemma 11, proposition 10, and proposition 9,

LEMMA 13, For any submodule N, rad (N) & t-rad(N).

Proof. By the earlier remark, if x € rad (N) there exists an integer k(x) such
that x*® € t-rad (N). Since R is Noetherian by (2, p. 90 Theorem5.1), (rad
(N))"C t-rad (N), for some integer h. By the definition of t-rad(N), rad(N)
S t-rad(N).

THEOREM 14, If R is a commutative Noetherian ring and if N is a submodule of
M. then rad (N) = t-rad (N).

Proof. Let a € t-rad(N) and let J,= {N: (a")). Then J, form an ascending
chain of submodules of M, hence for some k, Ji=Jx,,. If a*M & N, we can find m
€ M with a,m& N. Since a € t-rad (N) there is an 7€ R with ra*m &N  but
for (a)(ra*m) € N. Since R is commutative, this yields (a*'') {rm) & N, that
is. Tm€ J,.,=J., hence a*rm€ N, contrary to a*rm&N. Thus a € i - rad (N)
implies a*M C N for some integer &, so a* € rad (N). Since rad(N) is the in-
tersection of prime ideals, a € rad (N), that is t-rad (N) < rad (N). Therefore
t-rad (N) = rad (N).

LEMMA 15. If N, U, U’.V V' are submodules of M such that N=UN V= unv,
Uis P -tertiary, U’ is P’-tertiary and P P, Then N= VN V.

Proof. Let m€ VN V. Since P# P’ without loss of generality, there exists an
aceP a¢ P If mgN, there exists a t€ (m), t& N such that (a)(t) € N.
Thus (a)(3) S U NV, Since U is P -tertiary and (a)(l) S U, a€t-rad

(N’) = P’ a contradiction. Thus m€ N, that is VI VZ N, Since N& V., N&
V', we have N= VNV,
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THEOREM 16. If the submodule N of M has the two reduced representations N
= Ny () eerene N Ny= N/ N eeeree M N, then r=s, and the prime ideals P, = t- rad(N;)

coincide with the prime ideals P;= t-rad (N;) after renumbering,

Proof. P,= P/ for some i, lf not, since P,# P/, by lemma 15, N== N, (1 =-+++ N
N OY Ng MY eeeees M Ni. Since Py P;, and N=N, [} Y Np= Ny (N erere N N-NN;
(Yoeeeee NN;, N=NyNoeeee AN AN eeeeee M Ni. Continuing we arrive at N=N,
REIRIEE N N, contrary to the irredundanty of the representation N= N, (1= M Ny
Thus P,= P/ for some i. In the same way, given j, P,=pP; for some K.
This shows r< s. This is symmetric, so s=7. Thus r=s, and {Pitior, 2, i r =
(P} ez, o s =r.

LEMMA 17. A P-tertiary submodule N of M is primary iff P"MCN for some n.

Proof. If N is primary, then P=rad(N). Since x€rad(N) implies x**'& O(M/N
So P"CO(M/N) ((2, p.90 Theorem 5.1.)). Hence P"MCN. On the other hand, if
P"MCN, P"Crad(N). Since rad(N) is the intersection of prime ideals, this puts P
in rad(N). Together with rad(N) & P, P=rad(N) = t-rad(N).

References

1. E. A. Behrens, Ring Theory, Academic Press, New York and London, 1972,
pp. 249~259.

2 1. N. Herstein, Topics in Ring Theory, The University of Chicago Press,
1969, pp. 8§7~114.

3. T. W. Hungerford, Algebra, Holt, Rinehart and Winston, Inc., 1974, pp.
377~394,

4. J. Lambek, Lectures on Rings and Modules, Blaisdell Pudlishing Company,
1966, pp. 101~ 106.

5 D. G. Northcott, Ideal Theory, Cambridge University Press, 1972, pp. 13

~30.
6. J. A. Riley, Azxiomatic Primary and Tertiary Decomposition Theory,

Trans, Amer. Math, Soc., 105(1962), pp. 177~201

138



