Decomposition in Noetherian Rings

By Byung-In Yang & Yeong-Chul Kim

1. INTRODUCTION

The topic treated in this paper is an attempt to simulate in a noncommutative Noetherian ring the Lasker-Noether primary decomposition in a commutative Noetherian ring. For a large part, the results we shall give are due to Lesieur and Croisot.

A decomposition is given for an arbitrary left module as an intersection of special left modules -tertiary module - and we could hope that this would be a suitable vehicle for a profound study of noncommutative Noetherian rings and modules over noncommutative Noetherian rings.

All rings R to be considered will be Noetherian and will have unity. All modules M will be unital, finitely generated left R-modules. For any $m \in M$, $a \in R$ and submodule N of M, we denote by (m) the submodule of M generated by $m \in M$, by (a) the two-sided ideal of R generated by $a \in R$, by $(N:(a)) = \{ m \in M | (a)(m) \subseteq N \}$, and by $O(M) = \{ a \in R | aM = (0) \}$. Note (N:(a)) is a submodule of M containing N.

2. TERTIARY RADICAL OF MODULES

DEFINITION 1. If N is a submodule of M, then the *primary radical* of N, written rad(N), is the intersection of all prime ideals of R which contain O(M/N). N is a *primary submodule* of M if all elements $a \in R$, such that for some submodule K of M with N < K (not equal), $aK \subseteq N$, are in rad(N).

DEFINITION 2. The *tertiary radical t-rad* (N) of a submodule N of M (or an ideal N of a nonassociative ring R = M) is the set t-rad $(N) = \{a \in R \mid (N : (a) \cap (m) \subseteq N \Rightarrow m \in N, \text{ for all } m \in M\}$.

REMARK. For any ring, if $m \in \text{rad}(N)$, then $m^* \in O(M/N)$ for some integer k, since the intersection of all prime ideals is a nil ideal $\{(4, p.56, Proposition 1)\}$.

Thus if $m \in rad(N)$, then $m^h \in t - rad(N)$ for some integer h.

PROPOSITION 1. (a). If N is a proper submodule of M, and $a \in t$ -rad (N), then $(N:(a)) \supset N$ (not equal).

(b). If A is an ideal of R, $A \subseteq t - rad(A)$.

Proof. (a). If (N:(a)) = N, and $a \in t$ -rad (N), then for all $m \in M$, $(N:(a)) \cap (m) = N \cap (m) \subseteq N$. Hence $m \in N$, Therefore M = N, a contradiction.

(b). Let $a \in A$. Then (A:(a)) = R. Hence for all $b \in R$, $(A:(a)) \cap (b) \subseteq A$ implies $(b) \subseteq A$ and so $b \in A$. Therefore $a \in t - rad(A)$.

LEMMA 2. Let N be a submodule of M. If $a_1, \dots, a_n \in t$ -rad (N), then given $m \in M$, $m \notin N$, there is an $s \in (m)$, $s \notin N$ such that $a_i Rs \subseteq N$ for $i = 1, 2, \dots, n$.

Proof. Let $a \in t$ -rad (N). Then by definition of t-rad (N), for all $m \in M$, $m \notin N$, there exists $r \in (m)$, $r \notin N$ such that $aRr \subseteq N$. So if n = 1, this is obvious. Suppose then that we have found a $t \in (m)$, $t \notin N$ such that $a_iRt \subseteq N$ for $i = 1, 2, \dots, n-1$. Since $a_n \in t$ -rad (N), there is an $s \in (t) \subseteq (m)$, $s \notin N$ such that $a_nRs \subseteq N$. However for i < n, $a_iRs \subseteq a_iRt \subseteq N$. Thereby the lemma is proved.

THEOREM 3. For any submodule N of M, t-rad(N) is a two sided ideal of R Proof. For any a_1 , $a_2 \in t-rad(N)$, by lemma 2, given $m \in M$, $m \notin N$, there is an $s \in (m)$, $s \notin N$ such that $a_1 Rs \subseteq N$, $a_2 Rs \subseteq N$. Thus $(a_1-a_2) Rs \subseteq N$. Therefore, by definition of t-rad(N), $a_1-a_2 \in t-rad(N)$.

For any $r \in R$, $(ar) \subseteq (a)$ and $(ra) \subseteq (a)$. So $(N:(ar)) \supseteq (N:(a))$ and $(N:(ra)) \supseteq (N:(a))$. Thus if $a \in t$ -rad (N), since $(N:(ar)) \cap (m) \subseteq N$ implies $(N:(a)) \cap (m) \subseteq N$, then $ar \in t$ -rad (N), $ra \in t$ -rad (N).

COROLLARY 4. Let I = t - rad(N), given $m \notin N$, there is an $s \in (m)$ such that $s \notin N$, $Is \subseteq N$.

Proof. Since R is Noetherian and I is an ideal of R, $I=Ra_1+\cdots\cdots+Ra_n$ for some appropriate $a_i \in I$. By the lemma 2, pick $s \in (m)$, $s \notin N$ such that $a_i s \in N$ for $i=1, 2, \cdots, n$. Thus $Is \subseteq N$.

COROLLARY 5. Let I=t-rad(N) and let $N^*=\{m\in M \mid Im\subseteq N\}$. Then N is a

proper submodule of N^* .

Proof. Since I is a two-sided ideal of R, N^* is a submodule of M. Clearly $N^* \supseteq N$. By corollary 4, we can find $s \notin N$ such that $Is \subseteq N$. Since $s \in N^*$, $s \notin N$, N is a proper submodule of N^* .

LEMMA 6. Let N_1 , N_2 be submodules of M. Then $t - rad(N_1) \cap t - rad(N_2) \subseteq t - rad(N_1 \cap N_2)$.

Proof. Let $a \in t - rad(N_1) \cap t - rad(N_2)$ and let $m \in M$ such that $(N_1 \cap N_2 : (a)) \cap (m) \subseteq N_1 \cap N_2$. Since $(N_1 \cap N_2 : (a)) = (N_1 : (a)) \cap (N_2 : (a))$, $N_1 \cap N_2 \subseteq N_2$, and $a \in t - rad(N_2)$, by definition of $t - rad(N_2)$ applied to $(N_1 : (a)) \cap (m)$, it follows that $(N_1 : (a)) \cap (m) \subseteq N_2$, so $(N_1 : (a)) \cap (m) \subseteq (N_2 : (a))$. Hence $(N_1 \cap N_2 : (a)) \cap (m) = (N_1 : (a)) \cap (m) = (N_1 : (a)) \cap (m)$. Thus $(N_1 : (a)) \cap (m) \subseteq N_1 \cap N_2 \subseteq N_1$. Since $a \in t - rad(N_1)$, $m \in N_1$. Similarly $m \in N_2$. Therefore $m \in N_1 \cap N_2$, i.e. $a \in t - rad(N_1 \cap N_2)$.

3. TERTIARY MODULES

DEFINITION 3. Let N be a submodule of M. We call N a tertiary submodule of M if $(a)(m) \subseteq N$, $m \notin N \Rightarrow a \in t - rad(N)$.

DEFINITION 4. Let N be a tertiary submodule of M. If the prime ideal P of R is t-rad(N), then we say that N is P-tertiary and that P is the prime ideal of N.

LEMMA 7. Let N be a tertiary submodule of M. Then P = t - rad(N) is a prime ideal of R, i.e. N is t - rad(N) - tertiary.

Proof. Since $N^* \neq N$ and by lemma 2, there exists an $m \in M$, $m \notin N$ such that for all $a \in P$, $(a)(m) \subseteq N$. Since N is tertiary, P consists of all elements $a \in R$ such that $(a)(m) \subseteq N$. Suppose $x, y \in R$, $(x)(y) \subseteq P$, then $(x)(y)(m) \subseteq N$. If $y \notin P$ then $(y)(m) \notin N$. So by definition of t-rad(N), $x \in P$. Therefore P is prime.

PROPOSITION 8. Let P be an ideal of R and N proper submodule of M. Suppose i) $P \subseteq t$ -rad(N), and

ii) $(a)(m) \subseteq N$, $m \notin N \Rightarrow a \in P$, for all $a \in R$, $m \in M$.

Then N is P-tertiary.

Proof. Since i) $P \subseteq t \operatorname{-rad}(N)$ and ii) $(a)(m) \subseteq N$, $m \notin N \Rightarrow a \in P \subseteq t \operatorname{-rad}(N)$, for all $a \in R$, $m \in M$, N is tertiary. For each $a \in t \operatorname{-rad}(N)$, by proposition 1-(a), there exists $s \in (N:(a)) - N$. Then $(a)(s) \subseteq N$ and $s \notin N$. Hence by ii) $a \in P$. Thus, with i), $P = t \operatorname{-rad}(N)$.

PROPOSITION 9. Let N_1 and N_2 be P-tertiary submodules of M. Then $N_1 \cap N_2$ is P-tertiary.

Proof. Let $N=N_1\cap N_2$. If $(a)(m)\subseteq N$, $m\notin N$, without loss of generality, $m\notin N_1$, then since $(a)(m)\subseteq N_1$, $a\in P=t-\mathrm{rad}(N_1)$. By lemma 6, $P=t-\mathrm{rad}(N_1)\cap t-\mathrm{rad}(N_2)\subseteq t-\mathrm{rad}(N_1\cap N_2)=t-\mathrm{rad}(N)$. By proposition 8, N is P-tertiary.

4. DECOMPOSITION OF MODULES

DEFINITION 5. A submodule N of M is called *irreducible module* if it is not the intersection of two strictly large submodules of M.

DEFINITION 6. A representation $N = N_1 \cap \cdots \cap N_n$ of a submodule N of M as the intersection of tertiary submodules N_i of M is said to be *irredundant* if no N_i contains the intersection of N_i 's. $j \neq i$.

The representation is said to be *reduced* if it is irredundant and the t-rad (N_i) \neq t-rad (N_i) , $i \neq j$.

PROPOSITION 10. Every irreducible module is tertiary.

Proof. If N is not tertiary module, then there exists an $a \notin t\text{-rad}(N)$, $m \notin N$ such that $(a)(m) \subseteq N$. Since $a \notin t\text{-rad}(N)$, there is a $t \notin N$ with $(N:(a)) \cap (t) \subseteq N$. Since $N \subseteq (N:(a))$, and the lattices of modules of M is modular, $N = (N:(a)) \cap ((t) + N)$. But $(a)(m) \subseteq N$, $m \notin N$, so $N \subseteq (N:(a))$, and since $t \notin N$, $N \subseteq (t) + N$. Therefore N is not irreducible.

LEMMA 11. Every submodule of M is the intersection of finitely many irreducible modules.

Proof. Let \mathcal{F} be the family of all submodules of M which are not expressible as the intersection of finitely many irreducible modules. Suppose \mathcal{F} is not empty. Then there exists a maximal element N of \mathcal{F} . Then $N=A\cap B$ for some submodu-

les A, B of M such that $N \subsetneq A$ and $N \subsetneq B$. So $A \notin \mathcal{F}$ and $B \notin \mathcal{F}$. Therefore A and B are expressible as the finitely many irreducible modules. It follows that N is expressible as the finitely many irreducible modules, i.e. $N \notin \mathcal{F}$, a contradiction,

COROLLARY 12. Every submodule of M has the reduced representation.

Proof. By lemma 11, proposition 10, and proposition 9.

LEMMA 13. For any submodule N, rad $(N) \subseteq t$ -rad (N).

Proof. By the earlier remark, if $x \in \text{rad}(N)$ there exists an integer k(x) such that $x^{k(x)} \in \text{t-rad}(N)$. Since R is Noetherian by (2, p. 90 Theorem 5.1), (rad (N)) $^{h} \subseteq \text{t-rad}(N)$, for some integer h. By the definition of t-rad(N), rad $(N) \subseteq \text{t-rad}(N)$.

THEOREM 14. If R is a commutative Noetherian ring and if N is a submodule of M, then rad (N) = t - rad(N).

Proof. Let $a \in t\text{-rad}(N)$ and let $J_n = (N : (a^n))$. Then J_n form an ascending chain of submodules of M, hence for some k, $J_k = J_{k+1}$. If $a^k M \subseteq N$, we can find $m \in M$ with $a_k m \notin N$. Since $a \in t\text{-rad}(N)$ there is an $r \in R$ with $ra^k m \notin N$ but for $(a)(ra^k m) \subseteq N$. Since R is commutative, this yields $(a^{k+1})(rm) \subseteq N$, that is, $rm \in J_{k+1} = J_k$, hence $a^k rm \in N$, contrary to $a^k rm \notin N$. Thus $a \in t\text{-rad}(N)$ implies $a^k M \subseteq N$ for some integer k, so $a^k \in rad(N)$. Since rad(N) is the intersection of prime ideals, $a \in rad(N)$, that is $t\text{-rad}(N) \subseteq rad(N)$. Therefore t-rad(N) = rad(N).

LEMMA 15. If N, U, U', V V' are submodules of M such that $N = U \cap V = U' \cap V'$, U is P-tertiary, U' is P'-tertiary and $P \neq P'$. Then $N = V \cap V'$.

Proof. Let $m \in V \cap V'$. Since $P \neq P'$, without loss of generality, there exists an $a \in P$, $a \notin P'$. If $m \notin N$, there exists a $t \in (m)$, $t \notin N$ such that $(a)(t) \subseteq N$. Thus $(a)(t) \subseteq U' \cap V'$. Since U' is P'-tertiary and $(a)(t) \subseteq U'$, $a \in t$ -rad (N') = P', a contradiction. Thus $m \in N$, that is $V \cap V' \subseteq N$. Since $N \subseteq V$, $N \subseteq V'$, we have $N = V \cap V'$.

THEOREM 16. If the submodule N of M has the two reduced representations $N = N_1 \cap \cdots \cap N_r = N_1' \cap \cdots \cap N_s'$, then r = s, and the prime ideals $P_i = t - rad(N_i)$ coincide with the prime ideals $P_i = t - rad(N_i)$ after renumbering.

Proof. $P_1 = P_i'$ for some i. If not, since $P_1 \neq P_1'$, by lemma 15, $N = N_2 \cap \cdots \cap N_r \cap N_r \cap N_r' \cap N_r' \cap N_s'$. Since $P_1 \neq P_2'$, and $N = N_1 \cap \cdots \cap N_r = N_2 \cap \cdots \cap N_r \cap N_s' \cap N_s' \cap N_s' \cap N_s' \cap N_s' \cap N_s' \cap N_s'$. Continuing we arrive at $N = N_2 \cap \cdots \cap N_r \cap N_s' \cap N_s'$

LEMMA 17. A P-tertiary submodule N of M is primary iff $P^nM\subseteq N$ for some n.

Proof. If N is primary, then $P=\operatorname{rad}(N)$. Since $x\in\operatorname{rad}(N)$ implies $x^{\kappa(x)}\in O(M/N)$ So $P^n\subseteq O(M/N)$ ([2, p. 90 Theorem 5.1.]). Hence $P^nM\subseteq N$. On the other hand, if $P^nM\subseteq N$, $P^n\subseteq\operatorname{rad}(N)$. Since $\operatorname{rad}(N)$ is the intersection of prime ideals, this puts P in $\operatorname{rad}(N)$. Together with $\operatorname{rad}(N)\subseteq P$, $P=\operatorname{rad}(N)=\operatorname{t-rad}(N)$.

References

- E. A. Behrens, Ring Theory, Academic Press, New York and London, 1972, pp. 249~259.
- 2. I. N. Herstein, *Topics in Ring Theory*, The University of Chicago Press, 1969, pp. 87~114.
- 3. T. W. Hungerford, *Algebra*, Holt, Rinehart and Winston, Inc., 1974, pp. 377~394.
- 4. J. Lambek, Lectures on Rings and Modules, Blaisdell Pudlishing Company, 1966, pp. 101~106.
- D. G. Northcott, *Ideal Theory*, Cambridge University Press, 1972, pp. 13
 ~30.
- 6. J. A. Riley, Axiomatic Primary and Tertiary Decomposition Theory, Trans. Amer. Math. Soc., 105(1962), pp. 177~201.