HONAM MATHEMATICAL JOURNAL 1
Volume 5, Number 1, September, 1983

Some Properties of Cohen-Macaulay Rings

By Chong-Sun Chee

§ 1. Introduction

Recently the properties of Cohen-Macaulay rings are applied to Algebraic
Geometry ([5),(6),(7) and [17)). Therefore, a study of Cohen-Macaulay
rings takes an important position in Commutative Algebra. We can find basic
properties of Cohen-Macaulay Rings in (10] and [11].

But Cohen- Macaulay Rings have been studied in several respects.

For example,
(1)  We can see more significant properties of Cohen-Macaulay rings,
in [(3),(4),(6),012),(13) and [14].
(ii) We can see in (8] the relationship between Cohen—Macaulay rings
and Hilbert~Samuel polynomials.
(iii) The relationship between Homological dimension and Cohen-Macau-
lay ring 1s shown in [9].

The aim of this paper is 'o define strong-prime divisor (in §3), and
to prvoe its existence irn Cohen-Macaulay rings (Theorem 4.7), and to prove
some properties of Cohen- Macaulay rings.

The detailed contents of this paper are as follows:
In §2, which is a preparation for §4, we describe the definitions of terms
which are used in §4, and prove some basic properties of them (Proposition
2.2 to 2.5, Proposition 2.10 and Corollary 2.11).
In §3 we define strong-prime divisor (Definition3.5) and find some pro-
perties of it (Proposition 3.7, 3.8), and in §4 we prove some properties of
Cohen- Macaulay rings (Lemma4.5).
The main theorems of this paper are as follows:

(1) Let (R, m) be a notherian local ring. Then R is a Cohen~Macaulay
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2 Chong-Sun Chee

ring if and only if the unmixedness theorem holds in R (Theorem
4.6).

(2) Let (R, m) be a Cohen-Macaulay ring. If a=(ay, -, a,) is an ideal
of R such that ht(a)=r=ht(m), then m is a strong-prime divisor
of a (Theorem 4.7).

§ 2. Preliminaries

Let R=§30Rn be a noetherian graded ring. Then R, is a noetherian
ring and R is generated by homogeneous elements z,,:, z, with degrees
ki, -, k, (all >0), respectively. For a finitely generated graded R-module
M we have a finite number of homogeneous elements m,, -, m, with de-

grees 7, -+, 7., respectively, such that
M:le + e +Rmt = @OM'.
n=

In this case, each M, is finitely generated as an R,~-module, that is, it is
generated by all g; (z)m; where g; (x) is a monomial in the z; of total de-

gree n-r; ((1)}).

Definition 2.1. Let mod (R,) be the class of all finitely generated Ry —
modules, and let Z be the ring of integers. Then
2: mod(Ry) =2
is said to be additive if for each short exact sequence
0—-M —-M-M"-0
of finitely generated R, -modules 21 satisties
A (M) - 2A(M)+a2(M")=20.
For an additive function Athe Poincare series P(M, t) of M is defined by

P(M )= 3 M)t e Z((t)).

Proposition 2.2. We have

k;

P(M 6y =f()/ T (1=,

where f(t)e Z(t].

" Proof. We will prove by induction on s the number of generators
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Some Properties of Cohen-Macaulay Rings 3

of R over Ry. Let s=0, then for all n>0, R,=0 and so that R =
Ry. Hence M, = 0 for all sufficiently large n(Note that M is finituly gen-
erated R,-module). Thus P(M, t) is a polynomial.
We assume that s >0 and our assertion is true for s-- 1.

It is obvious that the mapping

Zy: My —— Moy, defined by m =z . m
is an R -module homomorphism. If we put K, = Ker x,, then we have an
exact sequence

0-»K,,——»M,,x-—s+Mn+ks — Lyiy, =0 (%)

o

Put K= '@Kn and L=,@O L, then these ar. both finitely generated R-mod-
ules since K is a submodule of M and L is a quotient module of M.
Furthermore, K and L are annihilated by x,, and thus they are R, [z, -+,
z,_; J—module. Applying 2t (x) we have

ACK) =AM+ 2(My oy )~ 2 (Louy,)=0
(cf. (13). Therefore

Tt (2K~ A(M) +A(Myy )= ALy i )=
that is,

kg1

tsP (K, O-tP (M O+P (M 1)~ 2 (2(M;) ')~ P(L 1)
kg~ o
+ Zl Z(L,)t‘—:: 0.
i=0
Hence we get the following:
kg1 ‘ , .
(1= ths YP(M, t)— P (L, t)—t* P(K, 1)+ ¥ {AM)~2L)}t'= 0.

120
Thus, applying the inductive hypothesis our assertion now follows.

Corollary 2.3. If each k; (1< <s) is equal to 1, then for all suffi-
ciently large n A(M,) is a polynomial in n(with rational coefficients) of

degree d -1, where the degree of the zero polynomial 1s - L.

Proof. By proposition 2.2. it is clear that
A (M,)=the coefficient of " in f(t)(1~¢t)"*.
If there is a term (1 -t)* in f(t) we cancel powers of (1 -t) and we may
assume s=d and f(1)%0. Put f(t)= 2;0 a, t* where «a, ¢ Z.

Since
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4 Chong-Sun Chee

(1-—t)"d=k2;0 a+k-1 Cqoq X
we have

N
P (Mn)z Z;(; Qg * g +n-k-1 Cd-—l for all n ?ﬁN
k=

The right - hand side is a polynomial in n with leading term

(Za) nt=t /(d-1)! #0.

For a ring R and an R -module M, a chain of submodules of M
M=M,2 M 2 2 M, 2
is called a filtration of M, and denoted by (M,). For an ideal a of R
it is an a- filtration if aM, < M,,, for all n, and a stable a- fitration
if aM, =M,,, for all sufficiently large n. Thus (M, = aM) s a stable

a —filtration.

Proposition 2.4. Let (R, m) be a noetherian local ring, 9 an M- prima-
ry ideal, M a finitely generated R - module, and (M,) a stable q - filtration
of M. Then the following hold.

(i) I (M/M,)< o for all n=0, where | (M /M,) is the length of
(M /M,).

(i1)  for all sufficiently large n, the length | (M /M,) is a polynomial
g (n) in n with degree < s, where s is the least number of generators of q.
(iii) the degree and leading coefficient of g (n) depend only on M and
q, not on the filtration chosen.
Proof. (i) Put
G(R)=@®,0"/¢""" and G(M)= D.M, /M, ...
Then G, (R)=R/q is an artinian local ring ((1)) and each G,(M)=
M,/M,,, is a noetherian R -module annihilated by q. Hence G, (M)=
M,/M,,, is a noetherian R /q-module with finite length because R /o
is artinian.
Since
LM/M)= 2 UM, /M) (o)
the module M /M, is of finite length.
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Some Properties of Cohen-Macaulay Rings 5

(ii) Suppose that q is generated by z,, -, x,, where s is the least
number of generators of q. Then G (R) is generated by z,, ---, 7,, asan
R/q-algebra, where Z;is the image of z,in q/q? with degree 1. Since
R/q is artinian we have

A(M,/My)= | (M,/M,,,)
((1]). Hence by Corollary 2.3. I(M,/M,,) is a polynomial f(n) in n
with degree < s-1 for all large n. By (%)
f)=1(M,/M,,)= I(M/M,,,)-1(M/M,),
and thus [(M/M,) is a polynomial g(n) with degree < s for large n.
(iii) Suppose that (AZ,) is another stable q-filtration of M. Set
Z(my= 1(M/M,).
Since two -filtrations have bounded difference, thus there exists an integer
no such that M,,, <3, and ,,, C M, for all n ([1)).
we have ‘
g (n+n)2 g (n)and g (n+neg)=g(n).
Since g(n) and }'(n) are polyn(;miais in n, consequently we have
W g(n) /g (n)=1
for large n.

This implies that g and g have the same degree and leading coefficient.

Let R be a noetherian semi ~local ring, and let
m=rad (R).
An ideal a of R is called an ideal of definition of R if its radical is equal
to m.
If (R, m)is a noetherian local ring, then each ideal of definition of
R is primary to m. In this case, we take a an ideal of definition and put
G(R)=,9"/4""" and G*(M)= $,9"M/q" "' M.
The polynomial g (n) corresponding to the filtration (q" M) is defined
by x(M,q:n), i.e,
x (M a:n)y= | (M/q"M)
for all large n. In particular, we put

(R, q:n)= x(9:n).

Proposition 2.5. Let (R, m) be a notherian local ring, and let q be an
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6 Chong-Sun Chee

ideal of definition of R. Then
deg y(q:n)=deg y(m:n).

Proof. By our hypothesis there exists an integer r, r > 1,
such that m"& q ¢ m. Therefore, we have
m™ gt Lom”
and thus the inequalities
x(mn) < x(q:n) < x(M:rn)
hold for all sufficiently large n.
Since the y’s are polynomials in n and
R By (mem) = Ay (0

we have deg y(m:n)=deg(q:n).

Definition 2.6. Let(R, m) be a noetherian local ring, and let a be an
ideal of definition of R. For a finitely generated R -module M, we define
deg y(M, a:n)=d(M).
In purticular,
deg y(m:n)=deg y(a:n)=d(R)

(See proposition 2.5).

Definition 2.7. Let R be a noetherian ring, and let M be an R-module
A prime ideal p of R is called an assoctated prime of M if one of the fol-
lowing equivalent conditions holds:
(i) there exists m eM such that Ann (m)=1p
(1i) there exists an R -module monomorphism R;p — M.
In general the set of all associated primes of M is denoted by Assg (M)
or Ass (M).
Under the above situation we put
Supp (M )= { p ¢ Spec (R) | My + 0}
then Ass (M) % Supp (M), and any minimal element of Supp (M) is in
Ass (M) ([10)). Conversely, the minimal associated primes of M are the
minimal elements of Supp ( M). Associated primes which are not minimal

are called embedded primes.

Definition 2.8. Ior a ring R 0 a finite sequence of n+1 prime ideals
76



Some Properties of Cohen-Macaulay Rings 7

Po2 P 2P 2 pa
in R is called a prime chain of length n.
For each prime ideal p & Spec (R) the supremum of the lengths of the prime
chains with Po =p is called the height of p and it is denoted by ht(p).
Hence ht(p)=0 implies that P is a minimal prime ideal of R. The dimen-
sion of R is defined by

. _ sup ht(p

dim (R )= peSpec(R) )
which is called the Krull dimension of R.

Let a be a proper ideal of R. The height of a is defined by

__int ht(p).
ST L

It is easy to prove that
(i) for each pe=Spec (R) we have ht(p)= ht(Rp)
(ii) for each ideal a of R
dim(R/a)+ ht(a) < dim(R).
Furthermore, for an R -module M (M # 0) we define the dimension of Mby
dim(M)=dim (R /Ann (M)).
In particular, when M =0 we put dim(M )= -1.

Definition 2.9. Let R be a ring and let M be an R-module. A sequence

a,, -+, a, of elements of R is said to be M -regular if for all { (1<.7
< r) the element ag; is not a zero divisor of M/(a1M+-"+ai_lM), and

M+ (ay, -, a, )M.

If all a; are in ideal a of R, a;, -+, a, is called an M -regular sequence
in a. Moreover, if there is no any element b& a such that ay,-, a, b
is an M -regular sequence in a, then a,, -, a, is called a maximal M- reg-
ular sequence in a- When R is noetherian and M is a finite R ~module,
and a is an ideal of R with aM % M the length of a maximal M -regular
sequence in a is called the a-depth of M and is denoted by depthq (M).
If (R, m)is a local ring we write depth(M) (or depthp(M)) for depthy
(M) and call it simply the depth of M.

The following are easily proved ([10)),
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8 Chong-Sun Chee

(i) If fea is M -regular then depth, (M/fM) = depthp (M)-1.
(1i) Let R be a noetherian ring. Then for each finite R ~module M
and P« Spec(R)
depth (Mp)= 0 as Rp-module <> pR, tE—:Asst(Mp)
&> pAss(M).
It consequence
depth (Mp) as Ry - module =depth, (M ).

Proposition 2.10. Let(R, m) be a noetherian local ring, and let M be a
finite R -module such that M+#0, Then for every Pc: Ass (M) we have
depth(M)<dim(R/p).
In particular
depth (M) < dim ( M).

Proof. Our proof will be completed by induction on dim (R /p).
We have to note that
dim(R/p)=0=>p == m =p>me= Ass (M) (by our assumption)
=>depth (M )= 0.
and so dim(R/p)=0 then
depth (M) = 0=dim (R/p).

Next, we assume that depth (M) > 0. Then there exists an M -regular
element fe&zm, and ()f*M = 0 because (R, m) is a noetherian local ring.
Therefore, there exists an associated prime ideal q of M, such that g 2p+
fR, where M;=M/fM and p & Ass(M)([10)). Since f is an M -regular
element, fe& p, and thus we have p & q. This implies that dim(R/p) >
dim (R /q).

By our induction hypothesis

depth (M) -1 =depth (M;) <dim(R/q) <dim (R /p),
and thus depth (M) <dim (R/p).

Corollary 2.11. For a noetherian local ring (R, m ) and a finite K-
module M, depth(M)= oo if and only if M= 0.
Proof. Assume that M # 0.. Then, by propesition 2.10
depth (M )< dim(M).
78



Some Properties of Cohen-Macaulay Rings 9

On the other hand, since M is finitely generated, dim (M) < co. This
implies that depth (M) < co. This is a contradiction to our assumption
depth(M )= oo. It follows that M = 0.

Conversely, assume that depth (M) < co . Then, by proposition 2.10
0< depth (M) <dim (M) < .

Since dim (0)= -1 this implies that M £ 0.

Thus the assertion holds.

§ 3. Strong- Prime divisors

In this section, we define maximal strong-prime divisor, strong- prime

divisor and find some properties of them.

Lemma 3.1. Let ¢ : R— R' be a ring homomorphism. If q' is primary
to P’ in R' then ¢7'( Q') = q s primary to ¢~1(P') = p,
Proof. Let x be an element of R. Then we have the following:
x is nilpotent module q <= there exists an integer n= 0 such
that x"< q
<= (p@)req’
< P(xye=p!
< ox e,
Hence we see that p is the radical of q. If ab&q and a &9 (aeb< R),
then ¢ (a) ¢(b) < q'and ¢ (a)& p'.
It follows that b q, and thus we see that q is prima‘ry to p.

Let S be a multiplicatively closed subset of a ring R which does not
contain zero. We put the following:
U= {a&R| ais not a zero divisor of R }
n = {a &R | there exists s &S such that as =0}.
It is easy to prove that n is an ideal. Let
$:R —- R/n

be the natural homomorphism.

Lemma 3.2. Under the above situation, let a be an element of the mul-
tiplicatively closed set generated by S and U, Then ¢ (a) is not a zero

divisor of R/n.
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Proof. We nced to note that U is also a multiplicatively closed set. Put
a = us, u¢t U and s e N, k
If for an element b =R ¢(a) ¢(b)=0 then ab =usbe&n. By our hypoth-
esis there exists an element s’ &5 such that usbs'=0. Since u is not a zero
divisor we have sbs'=ss'b=0. Since ss’&S we have be&n,
It follows that ¢(b) =0. Hence ¢(a) is not a zero divisor of R/m.

It follows from the definition of n that
S R={¢(a)/p(s)]| acR, s&S},

which is called the localization of R with respect to S.

Lemma 3.3. lLet q be a primary ideal of R belonging to a prime ideal
M pNS#d, then p(S™R) =q(S-1R) = SR,
(2) PSS = ¢. Then the following hold : (a)ncq,
(b) P(S-'R) is a prime ideal of SR,
(c) 9 (S-'R) is primary to p (S™'R),
(@) p(S'R)NR =9 and q(S'R) R =q,
Proof. (1) For s& p S there exists an integer n(n= 0) such that
sPez g,
Since s"€q we have
aNs = ¢.
For each a/s &S-'R and s'&p NS since
a/s =as'/ss' & p(ST'R),
we have S-'R =p (S~'R). Similarly we also have S-'R =q (S"'R).
(2) (a)Since TP, qNS = ¢ For each g & n there exists an element
s &S such that as=0, hence 0=as&q and thus a&q because s&qCp.
That is, nCq.
Next we shall prove (d). For b &q (S*R) MR
q's/s =b, g’&q and s& S,
in g (S-'R). Hence if we put §'s = 3 q we have
¢ (b)=¢(7)/¢(s) (Note that ¢ (bs)e ¢(q)).
Since N q by (a) we have bs e q. Since s&p it follows that begq, and
thus g (S™1R)q. Since qq (S'R) is obvious,
we have that q = q (S'R) (N R. As a particular case, where p =4,
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Some Properties of Cohen-Macaulay Rings 11

we have P =p(S'RYNR (Note that if p is prime then P is primary to p).
(b),(c). Take ¢(ab)/ ¢ (st)eq(S~'R) such that

¢ (a)/ ¢(s)&q (STR).
Then abe=q (S"'R)NR=9q (by(d)) and a & q. Hence there exists an integer
r(2 0) such that )

breza, (¢(b)/¢()<a(S 'R).
Therefore 9 (S~'R) is a primary ideal. Now, applying this to the case q=p,
we see that p (S-'R) is a prime ideal, since in this case r can be taken to
be 1. This proves (b).
Since elements of P is nilpotent modulo q, elements of P (S-1R) are nilpo-
tent modulo 9 (S 'R). That is, 4 (S TR) belongs to p(S*'R). Therefore,
(¢) holds.

Definition 3.4. For a given ideal a of a ring R let
¢: R - R/a
be the natural homomorphism. Let
U= {ace=R| ¢ (a) is not a zero divisor of R/ a }.
If there exists a prime ideal P such that
p=R-U

then p is called the maximal strong- prime divisor of a.

If pis the maximal strong- prime divisor of a then it is obvious that

p is a maximal prime divisor of a ({111). The converse is not true.

Definition 3.5. Under the situation of Definition 3.4, & prime ideal q of
R is called a strong- prime divisor of a if there exists a prime ideal p such
that af(R--p) = ¢ and qRyp is the maximal strong-prime divisor of aRy.
If qRp is a maximal prime divisor of aRy we say that q is a weakly strong
- prime divisor of a.

By definition a strong — prime divisor is a weakly strong- prime divisor,
and a weakly strong-prime divisor is a prime divisor ([11]), The conver-

ses of these statements are not true.

Proposition 3.6. Any weakly strong- prime divisor of a contains a, and
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12 Chong -Sun Chee

all elements of q are zero divisors modulo a.

Proof. Since qRp is a maximal prime divisor of aRp, by definition of

maximal prime divisor aRp C qRyp ([11]), Since qRyp is a prime ideal of

Ry by (2) of Lemma 3.3, we have y
qQRy NR = q
and thus a & q. Note that ac aRp N R. As before consider the natural
homomorphism
¢: R —- R/a,
and put

U= {ae R| ¢(a) is not a zero divisor of R/a}.
Then we can apply Lemma 3.2. to R/a, and thus we see that each elements

of q are zero divisors modulo a.

Proposition 3.7. A strong-~ prime divisor P of a is the maximal strong—
prime divisor of 6 if and only if p is a maximal member of the set of strong

~ prime divisors of a.

Proof. Let P be the maximal strong- prime divisor of a.
Then U= R~ P is the set of elements of R which are not zero divisor modulo
a. Therefore PRy is the maximal strong- prime divisor of aRp. That is, p
is a strong- prime divisor of R,
Conversely, let q be a maximal member of the set of strong-prime divisors
of a, since a strong- prime divisor is a weakly strong-prime divisor, by pr-
oposition 3.6 q consists of zero - divisor modulo a. Hence g contains in the

maximal strong- prime divisor of a.

Proposition 3.8. Let p be the maximal strong- prime divisor of a. Then
aRp N R is primary to .

Proof. At first, we have to note that
(i) if a’ is primary to p’ then p’ is the intersection of all prime ideals
containing a/, and thus if a’ is primary then p' is a prime ideal among
prime ideals containing a’.
(ii) for the radical p’ of o', the ideal a’ is primary ideal if and onlyif
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Some Properties of Cohen-Macaulay Rings 13

abea’ and b & p'(a,beER) implies a <= a’

Since p is maximal among prime ideals containing a, the same thing is
true for pRp and aRp. Since Rp is a local ring with PRy as its maximal
ideal PRy is the radical of aRy (see the above statement (i) ). By the above
statements aRyp is a primary ideal of Ryp. Therefore aRp 1s primary to PRyp.

By Lemma 3.1, aRp N R is primary to P = pRp VR (see (2) of Lemma
3.3).

§4. Cohen-Macaulay Rings

Throughout this section, by (R, m) we mean a noetherian local ring
without any statements. As in Proposition 2.10 for a finite R-module M
(#0) we have depth(M) < dim (M).

Definition 41 A finite R-module M is called a Cohen- Macaulay R -~
module if M=0 or depth (M) =dim (M). If the local ring (R,m) is a Cohen
- Macaulay R-module then we say that R is a Cohen-Macaulay ring.

Proposition 4.2 For a Cohen- Macanlay ring (R, m), we have
d(R) = dim(R) = depth(R).

Proof. We will prove by induction on d(R) (for notation d(R)see §2).

Assume that d(R) = 0. In the graded ring

G(R) = @, m/mnt,
degy(m:n) =0 for large n. This implies that large v,m=m*"!'= ... and
thus m¥=(0) ({10))., Therefore, it follows that the length [(R)of R is
finite, and thus R is artinian. Therefore, we have dim(R) = 0.

Next, suppose d(R) >0. If dim(R) =0 our -assertion is obvious. Hence
we assume that dim (R) >0. Then there exists a prime chain of length e >
0 such that ‘

b DB D D9
If we take an element re-p,—p, =P, then dim(R/(xR+p)) z2e—1,
Suppose the exact sequence
0 - R/p%E R/p — R/(xR+Dp) — 0.
Since y (R/(xR+ p), m: n) is a polynomial of degree < d( R/p)(cf. [10])
we have the following:
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d(R/(zR+ p)< d(R/P) < d(R).
Therefore, by induction hypothesis, we have

e~1 < dim(R/(zR+ D) < d(R/(xR+ D) < d(R),
and thus dim(R) < d(R).

Lemma 4.3 Let R be a noetherian ring. If M is a finite R- module the
Ass(M) is a finile set.

Proof. Under our situation there exists a chain of submodules

(0) =MyS% « S M, G M =M

such that M;/M; , = R/p; for some P;&spec(R) for 1 <7 < n ((10)).
Since for an exact sequence 0— M' — M'" - M'" of R-modules
Ass (M) & Ass (M") () Ass (M)
eAss(I\/l) C Ass(M,;) | Ass( M,/ My) ) - U Ass(M/M, ).

we hav

In particular,

Ass(M;/ M., ) = Ass(R/p,) = | b},
and so we have

Ass (M) S { Py, voeeeenns , b

Furthermore using the fact that Ass (M) & Supp (M) and any minimal

element of Supp (M) is in Ass (M) we can prove that the minimal associated
primses of R-module R/a are precisely the minimal prime over- idéals of ¢
where R is a noetherian ring, a an ideal of R and M a finite- R- module.
In particular, it is well~known that
if a=_(a,- - , a,) and P is a minimal prime over-ideal of a then ht(p)
<r and ht(a) < . '
Therefore, with together Lemma 4.3 we see that the following definition

makes sense.

Definition 4.4. Let R be a noetherian ring and a an ideal, and assume
that ,
Assr(R/a) = { Py, «oooe , Pt
If ht(p,) =ht(a) for all i=1,...,n then a is said to be unmired If for
all r, r > 0, each ideal a=(a;, -+, a,) with ht(a) =7 is unmixed then we
say that the unmiredness theorem holds in R.
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Some Properties of Cohen-Macaulay Rings 15

Note that ais unmixed<>R/a has no embedded primes.

Lemma 4.5 (i) If the unmizxedness theorem holds in R, then R hasno
embedded primes.

(i1) For each maximal ideal M, we have

the unmixedness theorem holds in R &> the unmiredness theorem holds in Rm.

Proof. (i) It is obvious that for any ideal a of R
dim(R/a) +ht(a) <dim(R).
Consider the zero ideal (0) Then from
dim (R) +ht(0) < dim (R)
we get ht (0) =0. Hence (0) is unmixed. Since the unmixedness theorem
holds in R, all associated primes of R/(0) = R are not embedded primes.
(i1) Since R is noetherian, for each ideal a there exists an irredundant
primary decomposition
a=0q, - NAq.
Then, for a maximal ideal m containing q,, --- q,
aRm = q;Rm (- N q,Rm
is also an irredundant primary decomposition of aRm. Let q;, be primary to
p; for all i=1,---s. Then q;Rm is also primary to p;Rm. In this case we have
Assg(R/a)= { py, -, 9.}
AssRm(Rm/aRm) = {p,Rm, -, p,Rm} ((10]),
Moreover, since 1< R we have the following;
a= (ay, =, a,)in R<aRm= (a/l, -+, a,/1) in Rm,
ht(a) =7 in R<>ht(aRm) =7 in Rm,
p; is not an embedded prime<«3p;Rm is not an embedded prime.

Hence the assertion helds.

Let(R.m) be a Cohen—Macaulay ring. The following Properties of the
local ring (R, m) have been proved ([10),(11]).
1° For every pe& Ass(R)
dim (R/9) =depth(R),
Thus R has no embedded Primes.
2° If a;, --, a, is an R -regular sequence in m then
R, =R/(a;R+ -+ + a,R)
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is a Cohen-Macaulay ring and dim(R,) =dimR—r.

3° For each proper ideal a of R

ht(a) + dim(R/a) =dim(R).

4° For a sequence a;, -4 a, of elements in m the following conditions
are equivalent:

(1) the sequence a;, '+, @, is R-regular,

(2) ht(a,, . a;) =1 forall 1<i{<,

:3) there exists a,,i, ', 4, (dimR = n) inm such that { ay, -+, 4.} 1is
a system of parameters, i.e. (a, -, dn) is an ideal of definition,

4) ht(a,, - a,) =r

Theorem 4.6 Let (R, m) be a noetherian local ring. Then R is a Cohen
—Macaulay ring if and only if the unmiredness theorem holds in R.

Proof. Assume that R is a Cohen - Macaulay ring, at first we will prove
that for each P ¢ Spec(R) Ry is a Cohen- Macaulay ring. Assume P 0 Ann
(R) then Rp = 0 and thus Rp is a Cohen—Macaulay ring. Next we assume
that Ann(R) —. P and want to prove that dim (Ryp ) = depth(Rp). Since

dim (Ryp) = ht ( p/Ann (R)), depthRy = depthpR.
Our proof will be proceeded by induction on depthp R.

(i) depthp R~ 0: If depthpR 0, then b is contained in some ¢ Ass
(R).

By 1°, every associated prime of R is a minimal prime over~ideal of Ann(R).
Since P q are in Ass(R) we have p - q, and thus
dimRyp = ht (p/Ann (R))=0.
(ii) depthyR = r > 0: We assume that for a prime ideal q depthqR<»r
then dimRgq = depthRq. Toke an K-regular element aep and put R, = R/aR.
From the exact sequence
0 > R % R

we also get the exact sequence
0 - Rp % Ry,

Hence a is a Rp-regular element. Thus, we have
dim(R))p - dim{Re,/aRy) =dim{Kp)-1

and also
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depth ( Ry )p = depthRyp --1.
By 2° R, is a Cohen~Macaulay ring. Hence by our induction hypothesis
depth (R, )p = dim ( R)yp. It follows that dim (Rp) = depth (Ryp).

Therefore, Rm is a Cohen- Macuulay local ring for every maximal ideal
m. By using this, we will prove that the unmixedness theorem holds in R.
By (ii) of Lemma 4.5 it is suflficient to prove that the unmixedness theorem
holds in Rm .

Consider the zero ideal (7)) in Rwm. Since Rm is a Cohen-Macaulay ring,
the ideal (0) is unmixed. Assume nt(ay, -+, «,) - r >0 in Rm.

Then, by 47, «,, «--. a, is an Rm - regular sequence. Note that each a;
is in MRm. Hence, by 29 Rw/(@Rm+ - +a,Rm) is also a Cohen-Macaulay
ring. Also, by 1°, each element pi of AssRm(Rm/a;Rm+ -+ aRm) is not
an embedded prime. That is, ht{p,) = r.

Conversely assume that unmixedness theorem holds in (R,m), and let ht
(m)=dim(R) = r. By the our assumption we can find an R - regular sequen-
ce ay, -, a, of elements in m such that ht(ay, -, a;) =¢ and a,, -+, a, is
maximal. Therefore, we have

depth(R) = r =ht{m) = dim(R).

Hence (R,m) is a Cohen-Macaulay ring.

Theorem 4.7 Let (R,m) be a Cohen- Macaulay ring. If a =(a,, -+, a,)
is an ideal of R such that ht(a ) = r = ht(m), then m is the maximal strong
- prime divisor of a and it is a strong- prime divisor of a.

Proof. We have to note that {or an ideal af of R the set of all zero

divisors of R;a’ is the sct Pei101), Since K is a Cohen-Ma-

PeAss(R/a")
caulay ring. Rm is also @ Colien- Macaulay locul ring.
It is obvious that

Assp(R/a) - {m},

and thus the set of zero divisor of R/a is the set m.

Therefore, m is the maximal strong - prime c¢livisor of a. By Proposition 3.7,
M is a strong-prime divisor of a. {In fact, since (a/1, -, a,/1) = aRm.
MRm is the maximal strong-prime divisor of aRw. Hence mis also a
strong- prime divisor of a (sce Deflinition 3.5) ),

87



18

(1)

€2)

(3]

(4]

(6]

(73

(81

(9]
(10)
(11]
(12]
(13)

(14]

Chong-Sun Chee

References

M.F.Atiyah and 1.G. MacDonald, Introduction to Commutative Algebra,
Addison- Wesley Publishing Company, 1969.

J.A. Eagon, Examples of Cohen- Muacaulay Rings which are not Goren-
stein, Math. Z. 109, 109-111 (1969).

D.Eisenbud, Some Directions of Recent Progress in Commutative Al-
gebra, in Algebraic Geometry, Arcata 1974. Amer. Math. Soc. Proc.
Symp. Pure Math. 29, 111-128 (1975).

M. Hochster, Cohen-Macaulay Modules, Lecture Notes in Math. No.
311, Springer~ Verlag, (1973).

M. Hochster, Rings of Invariants of Tori, Cohen- Macaulay Rings Ge-
nerated by Monomials and Polytopes, Ann, of Math, 96, 318-337,
(1972).

M.Hochster and L.J.Ratliff." Jr. Five Theorems on Macaulay Rings,
Pasific Journal of Math. 44, 147-~172, (1973).

M. Hochster and J.A.Eagon, Cohen— Macaulay Rings, Invariant Theory
and the Generic Perfection of Determinantal an Loci. Amer.]. 93, 1020
1058 (1971).

D.Kirby and H.A. Mehran, A Note on the Coefficients of the Hilbert
~Samuel Polynomial for a Cohen— Macaulay Modules, ]J. London Math.
Soc (2) 265, 449-457 (1982).

G.Levin and W.V.Vasconcelos, Homological Dimensions and Macaulay
Rings, Pasific Journal of Math. 28, 315-323 (1968).

H.Matsumura, Commutative Algebra, W.A. Benjamin, INC, 1980.

M. Nagata Local Rings, Interscience Publishers, 1962.

L.J.Ratliff. Jr., New Characterizations of Quasi- Unmired, [Unmired,
and Macaulay Local Domains, Journal of Algebra 74, 302- 316 (1982).
P.Roberts, Cohen- Macaulay Compleres and an Analviic Proof of the
New Intersection Conjecture, Journal of Algebra, 86, 220-225 (1980).
M.E.Rossi, On the Cohen- Macaulay Type of the Symmetric Algebra,
Communications in Algebra, 10(9), 981-4992 (1982).

88



Some Properties of Cohen-Macaulay Rings 19

(15] R.P. Stanley, Balanced Cohen-Macaulay Complexes, Trans of AM.S.
249 No.1, 139-157 (1979).

(16]) G.Valla, Certain Graded Algebras are always Cohen- Macaulay, Journ-
al of Algebra 42, 537-548 (1976).

(177 J. Watanable, Some Remarks on Cohen- Macaulay Rings with many

Zero Divisors and an Application, Journal of Algebra 39, 1-14 (1976).

89



