HONAM MATHEMATICAL JOURNAL 1
Volume 5, Number 1, September, 1983

G-Bundles and Representation Rings

By In-Taik Lim

§ 1. Introduction

There are a number of recently developed theories in topology sach as
K- theories, cobordism theory and index theorem/[ 4,6,7,10,15], Their influ-
ences are quite significant, On the other hand; the theory of representa~
tion rings is very useful in developing K-theories and cobordism theory .

In this paper, our main object is to prove Theorem2 5 on the necessary
and sufficient condition that a principal bundle have a restriction, and
Theorem 5.4 on certain relations between representation rings and K- rings,

In Section 2, we discuss some relations between principal. G- bundles
and principal H-bundles, where H is a closed subgroup of a topological gr-
oup G, and, by using them, we prove Theorem 2 5 which deals with the nece-
ssary and sufficient condition that every numerable G-bundle restrict to a
principal H-bundle,

Sections 3 and 4 deals with preparations for Sections5, In Section3, we
give certain properties of G-moduls, which are necessary -in the sequel, as
Propositions 3,3 and 3.6 and Lemmata 3.7 and 3.8, In Seetion 4, we also
give some necessary properties of representation rings as Propositions 4, 3
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2 In-Taik Lim

and 4,5,

In Section 5, we first define vector bundles with G-structure by 7 in
Definition 5.1, and then define i-rings X;°7(x) in Definition 5,2 and Propo-
sition5,3, Finally we prove Theorem 5.4 which deals with relations between

the representation ring Ry (G) of G and K:°7(X).

§ 2. G - bundles

Throughout this paper, G always denotes a topological group,6 Let é=(FE
(&), m,B(&) be a (real or complex) principal G-bundle, and let F be a left
G-space, For (x,y) = E(€) XF and s & G we define
(x,y)s=(xs, 57'y)

then £ (&) XF is a right G- space , We put
E(8); = (E(4)XF) mod G

and define 7;:E(§)s — B(§) by the commutative diagram
E(&)xF —EsE (6)—T—B(8)

b %
AN

E(§)
where proj is the projection and 9 (x,f) = x for (x,f/) cE(€) X F, Then
(E(&)p, s ,B(8)) is a fibre bundle with fibre F, In particular, if & is loca-
lly trivial, then so is (E(&)g, 7, B(£)).
Definition 2,1 With the above notations, the fibre bundle (E(£); ,

e, B(£)), denoted &§[F1, is called the associated fibre bundle of & .
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G-Bundles and Representation Rings 3

It is important to note that §[G]l= &,

For each space B, let K (B) denote the set of all isomorphism classes
of all (real or complex) mumerable principal G- bundles over B (for the
word “numerable”, see [5]).

Definition 2.2 A numerable principal G-bundle w=(Ey, e, Bo) 15 uni—
versal if

oL , Bol— K
is an isomorphism, where ¢ (f)=/"w for f<[B,Bo] and [B, Bo] is the set
of homotopy classes of continuous maps from B to B,

By Milnor ([81,[9]) every topological group G always has a unique uni-

versal principal G-bundle w; = (E(«;), 7, B;) up to G-bundle isomorphism,

Throughout this paper, H always denotes a closed subgroup of G,

Definition 2,3 Let &= (X,p,B) be a principal G—-bundle and 7 = (Y, ¢,B)
a principal H-bundle, If f:Y — f{Y) cX is a homeomorphism onto the closed
subset f(Y) such that

f(ys) =/f(y)s

for y=Y and s<G, then 7 is called restriction of &, and & a prolongation
of 7,

Note that every principal H-bundle (Hc., G) always has its prolongation,
But, there does not always exist a restriction of £&=1(X, p,B).
The following facts are known:

(i) A principal G-bundle § has a restriction to a principal - bundle
3



4 In-Taik Lim
n=(Y,q,B) if and only if &[G mod H ] has a cross section,
(ii)) Let wy=(FE(wy),%y,By) be a universal principal H-bundle and
w; = (E(wg), g, Bg) a universal principal G- bundle, For a numerable prin—
cipal G-bundle § = (X, p,B) with classifying map f: B—B;, the restrictions
7=(Y,q,B) of & are in bijective correspondence with homotopy classes of

maps g:B—» By such that fo+-g = f as the homotopic commutative diagram

B——1L g5
e
r:4 So
B,

where (Ao, fo) : wy[G]— @g, that is,

E(wg{G1) 22 E(wg)
(IH)G © T
Be 7P

Proposition 2.4 Let ¢; be the identity of G, A principal G-bundle
§=(X, p,B) has a restriction to the subgroup {e;} if and enly if ¢ is
trivial ,

Proof . It is easy to prove that if 7= (Y, ¢,B) is a principal {e¢g}-
bundle, then 7 is trivial, Since » has a prolongation which is trivial because
n is trivial, § = (X, p,B) is trivial Z This shows the necessity,

Conversely, assume that & = (X, p,B) is trivial , Then there is a bundle
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G-Bundles and Representation Rings 5

isomorphism ¥:X=BXG, Since G mod{ez} =G, we have §(G mod {e;}]1=¢§.
So, there is a cross section

¢:B—X
such that for all 5 =B, a(b) = ¢-'(b,e) where e is a fixed element of G,
By (i) & has a restriction 7= (Y, ¢,B) which is a principal {eg;}~bundle,
q.e.d,

Theorem 2.5, Every numerable principal G-bundle ¢ = (X, p,B) has a
restriction to a principal #- bundle if and only if the map fo:By —Bg has a
left homotopy inverse go:B;— By, If there exi;ts o, then it is unique up
to homotopy, If H is a deformation retract of G, then every numerable
principal G~ bundle restricts to a principal H~ bundle,

Proof, If there exists a map go:Bg— By such that go-fo ~ lp, ,then

we have the map g=go-f :B— By as in the diagram

/

B— 71 B
‘\
\

AY
g=go°f . &y/fo
w
H
Then, fo°& = fo°&o°f= /, because fo-g0= lp., By (ii) every numerable
principal G-bundle §= (X, p,B) restricts to a principal H- bundle
7] = (Yr q’B) .

Conversely, we assume that every numerable principal G -bundle rest-

ricts to a principal H-bundle, Then a unversal principal G-bundle
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we=(E(wg), s, Bg) bas its restriction »= (Y, q,B;), Thus, by (ii) there

exists a map go'Bg — By such that fo°go =~ ls; and g¢ wy =7,

Bg ___.,1.‘32..._.86
&0 fo
BH

Since fiwg= wyl[G]and g5 (wy[G]) =7[G]=ws, we have
So (&g (wy[G]) = wy LG,
This means that go-/fo = lby

We suppose that there are two maps g g} : R, —By such that
foo8b=1lp;=fog} and gh-fo =lpy =g o, From the expression
fough =la = fo-gh, since fo=fo we have gi=gi([12]).

Finally, we assume that A is a deformation retract, Then, there is a
retraction r: G—H such that r-i~], and i.r =lg where i:H—G is the in—
clusion map, By the Milnor construction there is the natural inclusion
Fo:E(wy) — E(wg), and there is the natural map 7o:E(w;) — E(wy).

Then, by the commutative diagram

E(oy)_To , E(ws) and  E(wg) _Fo E (@)

Ty © T g ® Ty
i 4
By : Bg Bg By

we have bundle maps (7,,i,) and (7o, 7o) , Since iows =wy[G] and rosio=lay,
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by the first part of our theorem every mumerable principal G-bundle has a

restriction to a principal H-bundle, ¢, ¢ d.

§3. G- modules

In the sequel, F denotes either the real field R or the complex field C,

Definition 3,1 An F-vector space M is a left G-module if there
exists a map u:GX M—M where u(s,m) =sm for s=G and meM,
satisfying the following conditions:

(i) s(m+n) =sm+sn for s=G and m, ne= M,

(ii) (ss')(m)=s(¢m) for s,s' =G and meM,

(ili) egm=m, where ¢; is the identity of G and mecM,

(iv) s(am) = a(sm) for s= G and me=M, ac F,
In the sequel, by a G-module we mean a left G-module over £,

Definition 3.2 Let M and N be G-modules, A function f:M-—N is
called a G-morphism if it satisfies the following:

(i) f is an F- linear map,

(ii) For all s G and mM, f(sm)=sf(m).
Let Homg (M,N) denote the set of G-morphisms f:M—N, Then we have

Homg  (M,N)c Hom (M,N),

We again assume that A/ and N are G-modules, Then, MPN, MX:N,

A M and Hom (M, N) become G-modules by the following ways,

(a) For s= G
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s(M@PN) = sMP sN, s(MPpN) = sMXesN.
(8) For se=G and gy -+ Na, = M
s{aA\ - ANa) =8 ay/\ - Asa,,
(¢) For each element s G we define
SyiM — M by sy(m) = sm,
Then, Hom; (M,N) becomes a G-module if we define
sf=snf sy
for f< Hom;(M,N) and s &G, In particular, for s,/< G and feHomg -
(M,N), we have
s(tf) = s(ty fty) = sn(taftn) Sy
= (syty) f (sytw) "= (st)f.

Proposition 3.3 For f = Homg(M,N) we have fec Homg /M, N) if and
only if sf=f for each s= G,

Proof . That f< Hom (M, N) means sf=fs for each s =G, Therefore,
sf=sufSu=sSusnf=/.

Conversely, we assume that sf=f for seG, It follows that
f=5f=syf$y and thus we have syf=fs,, that is, sf=/fs Hence f belongs
to Hom, (M,N) . g, e.d,

Note that if M, M,,-- M, are one-dimensional G~modules

A D M) = Ly My @y R Mir
as G-modules, where 1< 7 <: <i,sn,

We put
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F={alacF)}

and let M*=Hom;(M,F) denote the module of conjugate linear functionals,
that is, feM* if and only if f(a-+ib) = (a-ib)f in case F =C_ Then
M+ is a G-module by the relations :

(i) sf=fsy forall s&G and f& M+,

(ii) sa=gq for all a=F and 5 <G,

Definition 3.4 A G-module M is said to be simple if M has no any
G~ submodule, that is, no subspace N with sN=N for all s=G, A G- mo-
dule M is semisimpie provided it satisfies the following equivalent proper-
ties:

(i) M is a sum of simple G-submodules,

(ii) M is a direct sum of simple G -submodules,

(iii) For each G-submodule N there exists a G-submodule N’ such

that M=N@N",

Definition 3.5 Let M be an F-vector space, A Hermitian form on
W is a function 8:MXM —— F such that

(i) B is linear on the first argument and conjugate linear on the second
argument

(ii) 8(x,y) = 8(y,x) for x,y &M,

(iil) B(x,x) =20 for x= M and B(x,x) =0 if and only if x=0,

A Hermitian form 8 is said to be G~ fnvariant if

B(sx,sy) = B(x,»)
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for each s<G and x,yesM,
Let 8 be a Hermitian form of M, A function cg :M— M* is called the

correlation associated with 8 if

g (x)(y) = B(x,5)

for x,y&M ,

Proposition 3,6 Let G be a compact topological group, Then, a Hermi-
tian form of M is G-invariant if and only if e is a G-morphism,

Proof, We assume that 8 is a G- invariant Hermitian form of M,
Then, for all s =G and x,y =M, we have

cg (s2)() = B(sx,9) = B(x,57") = ¢ (x)(5'9) = s(g (x)(»)),
because cg(x) &M+ and s(cg(x)) = cg(x)§' for s < G, Therefore,

cﬂ(sx) ==sqg(x), and thus & is a G~morphism,

Conversely, we assume that Cp is a G-morphism, Then, for x,ycM

and se=G we have

B(sx, sy) = cg(sx) (sy) = s cg(x)(sy)
= (s7(scg(x))) (») = (s715)(eg(x)(»)) = B(x,5)

and thus 8 is G-invariant, ¢, e, d,

Note that every G -module has a G-module has a G- invariant Hermi-—

tian form if G is compact ([2],[5]).

Lemma 3.7 Every G-module M is a direct sum of simple G-submodu-
les if G is compact (i, e, every G-module is semisimple if G is compact),

Proof, Let 8 be a G- invariant Hermitian form of M, If M is not sim-
10




G-Bundles and Representation Rings 11

ple, then there is a G-submodule L of A We put

L'={ysM|B(x,y) =0 for all x =L},
Then L' is a G-submodule of M such that L\ L'={0}. We want to show
that each element a <M has only one representation a= !+ {’ such that
l<L and I' =1’ We define

L—sF (yr8(a,y)),
then 8(a, )< L™, Since cg:L— L* is an isomorphism, there exists an
element / in L such that

B(1)=8(1, )=B8(a, ),
Then, a-/ =1’ e=L', because,

B(1',x)=8(a~l,x)=B8(a,x)-B(l,x) =0
for all xe< L, Hence we have a=/+4/' such that /<L and !’ <1’ , Suppose

that there is another representation g= /,+ /| such that /L and /i L',

Then
(I-h)+('-1l{y=0 implies /=1, and /' =1,
This means that
M=L® L,
and thus M is semisimple, ¢, ¢ .d,
Furthermore, it is known that for a G-morphism f:M-— N between
F-vector spaces([5])

(i) if M is simple, then f is either zero or a monomorphism;

11



12 In-Taik Lim

(ii) if N is simple,then/ is either zero or an epimorphism;
(iii) if M and N are simple,then f is either zero or an isomorphism;
(iv) if M=N is simple and F is algebraically closed (i,e,,F=C),then f
is a multiplication by a scalar,
For (iv), note that if 1< F is an eigenvalue of f and L=Ker(f-1)(:0),
then L is a G-submodule of M, Hence L=M and f(x)= Ax for x=M,
Lemma 3,8 Let us suppose that F=C and G is abelian, If a
G-module M over C is simple,then M is a one-dimensional G-module and
for each s=G
SyeM — M
is multiplication by a complex number 25, Therefore, there is a group
homomorphism
P:G — C* (P(s) = 2g)
where C*=C-{0},
Proof, Since G is abelian, for s, t< G and mcM, we have
sy(tm) =s(tm) = (st) (m) = t(sm)= t(s,m),
that is, s, is a G-morphism, By(iv) there exists only one complex number
45 such that for all me M
sy (m) = Agm,
Next, for s, t =G and me M, we have
P(st)m= 24 m=(st)y m= sy (tym) = A5 (4m) =(Ag-4,) m
=¢(s) P(t)m

12
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and thus we have ¥(st) = ¢(s) ¢(¢),that is, ¢ is a group homomorphism,
Since each one-dimensional subspace of M is a (-submodule and M is

simple, M is a one-dimensional G-module,k ¢, ¢, 4d,

§ 4. Representation Rings
For a topological group G, let Mg(G) denote the set of isomorphism
classes [M] of G-modules M over ', Then Mg (G) is a semiring with
operations
(MI+[N]= [MDN], [M]-[N]=[MR) N],

where [Af] and [N] are in Mg (G).

Definition 4.1 The representation ring R (G) of G is the completion

of the semiring Mg (G), That is,
Re (G) =M (G) X Mg (G) /~,

where the binary relation “~” is definded as follows:

(M ], [N 1)~ ([Ms], [N2]) iff there exists [L] < Mg (G) such that

IMDN: D Ll=[MD M D L],
The equivalence class of ([M], [N]) will be denoted by <[M], [N I>,
In this case we put <[M], [N]> = [M]- [N], where [M] and [N]are in
Mg (G).

In the ring Ry (G) we know the following

(a) addition :

<[(M], [MI>+<[M], [N]> = <M My, [NiD Nal>

13
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(b) multiplication :
<[M], (NT> - <[M], [N:1>=<[M K MxD M) N2 ],
(MR N2 DN R)s M2 ]>
(e) zero element :
<0,0 > = <[M], [M]>
(d) identity element :
<[Fl,0>(sa=a for s G and ac F)
(e) there is the natural inclusion map
6:Mp(G) — R (G) (8([M]) =<[M],0>=[M])
such that if there is a semiring homomorphism ¥ :M;(G)—A for any ring A,

then there exists a unique ring homomorphism 4 :Rp(G) — A satisfying the

commutative diagram: My (G) 6 Re(G)
© . 3h
4"

Definition 4.2 A 2-semiring R is a commutative semiring together
with functions 2‘: R— R for i 2( satisfying the conditions

(i) 2%(x) =1 and 2'(x) =x for each x= R,

(ii) 2% (x+y) =£§* A (x) ¥(y) for k20 and x,y R,
A morphism u: (R, ') — (R’, 2*) is called a 1-semiring homomorphism

if u: R — R' is a semiring morphism and if the diagram
R ¥ R

14
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is commutative . In particular, if in a i1- semiring (R, ) R is aring ,then
(R, 2%) is called a 2-ring,
Proposition 4.3 Ry(G) has a 2-ring structure,
Proof , At fist, we define
2V :Mp(G) — My(G)
by X¥([M]) = [A*M], where A*M is the i-th exterior algebra of M,
Note that AM is a G-module(See Section 3.),
2([M]) =[A"M]=([F]=1 and 2} ([M]) = [ £ M]=[M],
Since

H([M1+[N]) = 24([MDN]) =[ 4MDN]
=[5, #MA 4iN]= E, ¥(IM])- ¥(IND),

(Mg(G), 2%) is a 2-semiring,
We define
A Me(G) — 1+Re(G) [[ 1T
by 2((M])=1+ ig A5((MDt* where for a ring R
1+RI[t] ={1+ait' +aat?+ - |, ER, i=1,2, 1.
Note that ,((M1) = £ (M) t'e 1+My(G) [L# 11* 1+ RKG) (L4 1T,
and that the subset 1+ R, (G)[[¢1]* of the ring Ry(G)[[¢]] is a multipl-
icative group, By(e) we have the group homom orphism
%1t Re(G) — 1+R,(G) [[ ¢ ]1* satisfying the commutative diagram:
M, (G) — % Ry(G)

\ o A

1+Re(G)([ ¢ 1T
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because
3(IM1+[ND) = 2(IMBN)) = 1+ £ 2i(IMOND)¢
=1+ 5 T 2(M1) IV = 2(MD) 2(IND),

A=1 §+j=k

that is, i, is a group homomorphism ., We put for xe Rp(G)
L0 =L WDts,
fm0
then 71%(x) =1, 2'(x) = and P (x+y) = g}"‘}"‘(x) {i(y) where z,yc Ry (G).
J

Therefore, (Ry(G), 7“) isa A-ring, q.e.d,

By Lemma 3,7 it follows that the representation R (G) is generated

by all simple G-module classes

Definition 4,4, For each [M] < My(G) we define
By G F
U U
s b—>Tr s,
which is called the character of M, where Trs,, is the trace of the
matrix s, We put
Che(G) = { 1y | (M) & My(G)}.
By the elementary properties of Tr it follows that
(1) Xygn = Xy + Ay
(ii) Ywen= Xy n.
The set €;(G) of continuous maps f:G— F is a normed space by

A =382 || f(s) | for each fe Cy(G), Moreover, C.(G) is a commutative

16
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ring with 1, In this case, since Chg(G) C Cy(G), let
Chg(G) be the subring of Cg(G) generated by CT!,(G).
Note that there exists the isomorphism
P : Re(G) — Che(G)

defind by
e(IMI-[ND) = x,- %,

where (M] -~ [N] & R(G).

Proposition 4,5 (i) Let M and N be G-modules over F, Then %, =Xy
implies that M = N as G-modules,

(i) If u:G—— H is a topalogical group homomorphism such that for
each t< H there exists s H with sts~'< u(G), then

Re (4) 1R (H) — R (G)

is a monomorphism, where Rq(#)([M])=_[uM] for [Mlc R (H),
u*M=M as sets, and g(u*M) =u(g)M for each g== G,

(iii) If u:G—> G is an inner automorphism, then Ry («) is the
identity of R;(G).

Proof, (i) If ,"M'“" Xy implies that M =N, then the above isomorphism
¢ does not make sense, Hence X=X, implies M=N,

(ii) For each [M]& Ry(H) we have X,y = Xy x on G, Hence Y- =
%, -« implies ¥, = % where [Nl Ry(H), because by our hypothesis for
each g G there exists s and ¢ in H such that u(g) = sts~'and by
X(sts=1)=x(t),

17
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Therefore, by (i) M=N and thus [M]=[N], Hence, we have
Re(#)([M]) = BRe(w)([N])

which implies that Re(#) is a monomorphism,

(iii) By our assumption there is an element s G such that
u(t) = sts? for te G, For each element [M]< Rg(G), we have
tr(u*M) = sty st M
and thus
Xurm(8) =Tr by =Tr(sytysit) = Triy=0(t),
That is, X,*y = X,. By (i) we have #*M=M,and hence,

Re(u)((M])=[u*M]=[M], q.e.d.
§5 . Bundles with G- structures

Definition 5,1, Let £=(E(§),m; ,X) be an F~vector bundle over X,
If there are a locally trivial principal G-bundle 7= (P,n:v,X) over X and
a G-modulé M over F such that

E(8) = PXM

where (p,m)s = (ps,s'm) for p=P,mcM and s =G and PX ;M= (PXM)/G,
that is, &=7[M], then & is called a vector bundle with G-structure
by 7.

Definition 5.2 Let X be a paracompact space, Let Vect %7(X) be the
set of all isomorphism classes of F-vector bundles over with G-structure

by 7, where 7 is a fixed principal G-bundle over X which is locally trivial

18
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Then Vect:S7(X) is a semiring with operations

(I+[v]1=[e@v], (pIu]=[~Ryv]
where (1] and [v] are in Vect,Sy(X), In fact, if k=7l M]and v=7p[N],
then

EDv=9[MPN], #®pv=n0[MRN]
Moreover, if K.S7(X) denotes the completion of Vect %7 (X), then the ring
KgS7(X) is called the K-ring of F-vector bundls over X with G- structure
by 7.

Let T;, be the category consisting of all topological groups and topol-
ogical group homomorphisms and 2-Ring the category of A-rings and
A-ring homomorphisms

Propesition 5.3, (i) Re: T, —> 1-Ring is a cofunctor ,

(i) K%7(X) is a A-ring where 7 is a locally trivial principal G- bundle
over X,

Proof, (i) For each %:G — H in T,

Re () : Re(H) — Ry (G), Re(u)([M]) = [w'M], IMISR ,(H))
is defined as in (ii) of Proposition 4.5, By Proposition 4,3, Re(G) is a
A-ring for each G=T,,, It is easy to prove that
(a) for 15:G—G in Ty, Ry(lg) = 3 S
(b) for u:G—Hand v:H—L inTg,
Re(veu) =Rg(u) Re(v)
(¢) for [M]and [Nl Ry(H)

19
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By () ([M1+[N]) =Ry (%) ([M1) +Re(s) ([N)
Re(4) ([MI[N]) =Ry () ([M@N1) = [Ry (%) ([M]) ®pR;(x) ([N)
=Ry () ([M1) Re () ([N]),
Since for each [M] & R, (H)
Re(#) (3 [M]) =Rg(w) ([4]) = [ Au*M] = 2([%°M])
= 2Ry (w)([M]),
Rp(x) is a 2-ring homomorphism,
Therefore, Ry is a cofunctor,
(ii) As in Propesition 4,3 we can make K;“7(X) a 1-ring,

That is, we define

2% :Vect,Sn(X) Vect 67 (X)
1] u
[£] +~ s [ AP £]

then Vect“7(X) is a 1-semiring, (Note that if &=y [M], then
A E=n[A'M],) Since K%7(X) is the completion of Vect,Sn(X), we have

the commutative diagram

Veet :“7(X) Kg¥n(X)
\ /h
1+KSn(X)[[ ¢ 11+

where 6 is the natural inclusion map and 2, is defined by
4¢3 VeetpSn(X) ——— 14-K,57(X) [[ ¢ 10*

U )
[¢] m—m——————s 1+‘)§12‘(£63)t'.

20
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Since i; is a group homomorphism, so is 7, Let us put 1,(x) ~—-1+§ 17" (x)¢¥
for each x =Kp%n(X), Then, it follows that (K,S7(X), 2;)is a -ring ,g.ed,
Let K%(X) denotes the set of all isomorphism classes of locally trivial
principal G- bundles over X, Also,by (} we mean disjoint union,
Theorem 5.4, (i) We assume that a topological group G and a locally
trivial principal G-bundle 7 are fixed, Then for any compact space X, th-

ere is the 2-ring isomorphism

9’ : Rp (G) KFG’] (‘X)

) v
IM}-IN] v~~~ [9lMT]-[2IN]I.

(ii) If we put

: . , U G G
f‘g oBG‘RF (@ =R (G), e ffp 7(X) =3:5(X),

then there is an injection,
7: R (G) — 34°(X)
where Ry(G) = Rg(G)s for all fe [X,B;] and X is paracompact,
Proof , (i) It is clear that ¢ is injective by our definition, Take an '
element [ 4] -[v] & KyS7(X), then there are two G-modules M and N such
that

nM]=p, n[N]l=»,

Hence,

P(IM]~[N]) =[r]-[v]
21
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Moreover, for [M]e R (G), we have
¢ (2(M1)) = ¢ ([4M]) =2 A*M]]
= [4° (7IMD) 1= 2'¢([(M]).
This implies that ¢ is a i-ring homomorphism,
(i) Since wg=(E(wg), g, Bg) is a universal principal G -bundle, there
is a bijection
u:l[X,B;] —— KX)
({81, [91). For f&[X,B;], assume that »(f) = (7], Then, for
[M]~[N] &R (G)s,we define
V(IMI-IND) = [9M]]1 - [7[N]] & K:S(X),

By (i) it follows that ¥ is an injection g ¢ 4,

Example 5.5, As is well known, a compact Lie group has maximal

tori ([1],[2]), and a maximal torus of SO(2n) is a subgroup of all

diagonal matrices D(6,,--- ,6,), where

D(0)=(m0 ~sin¢9)

sin 8 o f
and D(0,,:--, 6,) is the 2nx2n- matrix with D (61), =+, D(6x) o0
the diagonal, Similarly, a maximal torus of SO (2n#+1) is the subring of
all diagonal matrices D(6;,--, 8,, %), where
D(8:) 0
D(8:,-, Oy, %) = ( . )
0 Di6n) 1

(Note that a maximal torus is a compact connected abelian Lie group)

22
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Let G be a compact Lie group,and let T* be a maximal torus of G, By
Lemma 3.7 and Lemma 3,8 every simple T"-module over C is aone-dimen-
sional C-vector space M(k,,-, k,) (dimg T* =# and &, <Z for i=1,2,.,n)
and for (61,-, 0y) &T", z&M(kr, -, kx)

(61,,0,)z=exp[ 290i (ky 0,4+ + ky0,) ]
([1D).
In particular, since s(x&®y) = sx@sy for T*-modules x,y and s=G,
we have |
M(ky, k) @My, o ly) =M+, kytly),
Furthermore we can prove that
Re(T") =Z[ a1, @1, , ay, &,
where a;=M(1, 0, Q) , -, an=M(0,+0,1),
Thus, for any locally trivial principal T*-bnudle n, we have
KT (X)=Za, &, -~ ,an, @ ).
Since the inclusion map T” — G satisfies the condition of (ii) of

Proposition 4.5, Re(G) is a subring of Re(T*) =Z[ a\, @i, ay,ay l.
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