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A SPECIAL SUBCLASS OF CLOSE TO CONVEX FUNCTIONS

O.P. AHUJA

1. Introduction.
=

Let S denote the class of functions fez) =z+ L;anzn which are analytic in
8=2

the unit disk E = {z: Iz I<1}. A function r/J E S is said to be a convex fun­
ction, denoted r/JEK, if

{ r/J" (z) }Re 1+z 1/ (z) >0, (zEE).

The subclass C of S which consists of close-to-convex functions f is charac­
terized by

(1. 1) If' (z) }
Re 1/(z) >0, zEE

for some r/JEK.
Let V be the family of functions fES satisfying the condition

(1. 2) Re {(1-z2)f' (z)} >0
for all z E E. It is known [2J that f E V is univalent and f (E) is a domain
convex in the direction of imaginary axis, that is, the intersection of f(E)
with each vertical line is connected, or empty. The class V has been, fur­
ther, studied in [3J and [4].

=
Let V(a, {3) be the class of functions fez) =z+ I;anz", analytic in E, and

11=2

satisfying in E the condition

(1 3) I (1-z2)f'(z)-1 1<1
. 2{3( (1-z2)f' (z) -a) - ((1-z2) f' (z) -1)

for some a, {3(O::;;a<l, 0<{3::;;1). Clearly, V(O,l)==V. Further, by fixing

a=O, {3=1 in (1. 3) and on choosing r/J(z) = ~log {(1+z) / (l-z)} in (1.

1), we observe that (1. 1) coincides with (1. 3). In fact, functions satisfy-
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ing (1. 3), we may call, special close-to-convex functions of order a and

type .8associated with ifJ(z) = ~log {(l+z)/(l-z)}.

We observe that by special choices of a,.8 our class, V (a, .8) , gives rise
to various new subclasses of S; for instance,

V*==V (0, ~) = {fES : I (1-z2)f' (z) -11 <1, zEE},

Va*==V(O, (20-1)/(20))= {fES: I (1-z2)f'(z)-01<0,0> ~,ZEE},

V{p)==V«l-p)/(l+p), (1+p)/2)

= {fES: I«1-z2)f' (z) -1) / «1-z2)f' (z) +1) I<p, 0<p:S:1, zEE} ,

V*(a)==V{O, 1-a)= {fES: I (1-z2)j'(z) -l!(2a) 1<l!(2a),

O:S:a<l, zEE}.

Since the class V (a,.8) includes various subclasses of S, a study of its
convexity properties will lead to a unified study of these classes. In this
paper, we determine the radii of convexity for the class V(a,.8). In par­
ticular, we deduce the corresponding results for the classes V*, Va*, V (p)
and V*(a).

2. The Radii of Convexity for V (a, .8).

THEOREM Let fE V(a,.8). Let ro be the smallest positive root in (O,lJ of
the equation

(2.1) (2,8-1) (2a.8-1) (r-2)r3 -2(.8+a.8+2a.82 -1)r2 -2r+1=0.

Then
(i) for O:S: r<ro, f is convex in Iz I<rh where rt is the smallest positive

root in (0, 1) of the equation

(2.2) (2.8-1) (1-2a.8)r4+2(l-2.8) r3 +2.8 (2a.8-a-1) r2

+2(2a.8-1)r+1=0;

(ii) and for ro:S: r<l, f is convex in Iz I<r2 where r2 is the smallest
positive root in (0, 1) of the equation

(2.3) a(l-a) (2.8-1)r8 -2a.8(1-a)r6+ (2a2.8-2a.8+4+2a2-6a)r4

+2a.8(1-a)r2-a(1-a) =0.

The above bounds are sharp.



A special subclass of close to convex functions 109

Proof. Let fE V(a, {3); then the condition (1. 3) coupled with ~an appli­
cation of Schwarz's lemma gives

(2.4) (1-z2)f' (z)= 1+ (2a{3-1)w(z)
1+ (2{3-2) w (z) ,

where w is analytic function in E and satisfies the condition w (0) =0 and
Iw(z) 1<1 for zEE. Taking logarithmic derivative of (2.4), we find that

(2 5) l+z f "(z)_= 1+z2 _ 2{3(l-a)zw'(z)
. I'(z) 1-z2 (1+ (2{3-1)w(z» (1+ (2a{3-1)w(z» .

Taking the real part of (2. 5) of both sides,

(2. 6) Re{l+z-j;~J} =Re{i~:~} -2{3(1-a)

Re{ zw' (z) }
(1 + (2{3-1) w(z» (1 + (2a{3-1) w (z» .

Since ljJ(z) =w(z) /z is also a bounded analytic function in E, we have by
[5,p.168]

I zw'(z) -w(z) 1= 11jJ' (z) 1S r2-lw(z) 1
2

, ()z) =r)
Z2 r 2 (l-r2)

or

(2.7) r 2 -1 w(z) 12

Izw'(z)-w(z) Is 1-r2 .

Equation (2. 6) yields in conjunction with (2. 7),

(2.8) Re {I + zf" (z) } ~ 1-r
2

+ 1 {Re ((2{3-1) p(z) + (2a{3-1»
f'(z) 1+r2 2{3(1-a) p(z)

r21 (2{3-1)p(z) - (2a{3-1) 1
2 _ 11-p(z) 12 } {3+a{3-1

< (1-r2) Ip(z) I {3(l-a) ,

where

(2.9) p(z) = 1+ (2atl-l)w(z)
1+ (2tl-1) w (z)

We observe that the transformation (2.9) maps the disk Iw(z) ISr onto
the disk Iw(z) -al<d, where

a=1-(2tl-l)(2atl-l)r2 _ 2tl(1-a)r
1-(2tl-1)2r2 ,d- 1 -(2tl-1)2r2·

Setting p(z) =a+u+iv, R= Ip(z) I and taking M(u, v) as the expression on
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(2.10)

the right hand side of (2. 8), we get

1-r2 1
M(u, v)= l+r2+ 2,8(I-a) {(2,8-1) (a+u) -2 (,8+a,8-1)

1- (2,8-1)2r2 d 2-u2-v2 (2a,8-1) (a+u) }
1-r2 R + R2 .

On differentiating (2. 10) partially with respect to v,

oM(u, v) vR4N(u, v)
~av 2,8(I-a)

where

N(u, v) =2(1-2a,8) (a+u) + (1- (2,8-1)2r2) (d2
-U

2-v2)R
1-r2

2 (1 - (2,8 - 1) 2r 2) R3
+ 1-r .

It is easily seen that N(u, v) >0 and so the minimum of M(u, v) on every
chord u=constant is attained when v=O. Thus the minimum of M(u, v)
inside the disk Ip(z) -al ~d is attained on the diameter v=O. Setting v=O
in (2.10), we obtain

1-r2 1
L(R)==M (u, 0) = 1+r2+ ,8 (1-a) (l-r2) {,8(1- (2,8-1) r2) R

+a,8(I- (2a,8-1)r2)R-l-a(I-2,8-1)2r2} ­

,8+a,8-1
,8(I-a)

for a-d~R~a+d. Thus it 'follows that absolute minimum of L(R) ill

(0, 00) is attained at

(2.11)

and equals

Ro= {a(l- (2a,8-1)r2}i-
1- (2,8 -1) r2 '

(2.12) 1-r2 1
L (Ro)=~+ (I-a) (l-r2)

{V4a (1 - (2,8-1) r2L (1- (2a,8 -1) r2)

- (1+a) + (4a,8-a-l)r2}.

We note that Ro<a+d. However, Ro may not always be greater than a­
d. Hence the minimum of L(R) is attained at



(2.13)

and is equal to
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R =a-d= 1+ (2aj3-1)r
1 1+ (2j3-1)r '
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(2.14) L(R1) = i~~~ - (1 + (213- ~~;~ O:~(2aj3-1)r) .

Therefore, from (2.12) and (2.14) we get

{
zf" (z) }

(2. 15) Re 1+ ff (z)

1+2 (2aj3-1) r+2j3 (2aj3-a-l) r2-2 (213-1) r3 - (213:-1) (2af3- 1) r4 •

(l +r2) (1 + (2j3-l)r)(1 + (2aj3-1)r) ,

2:: for RoSRr,

1- r2 + f.L(r, a, m for R
0
2::R

11+r2 (l-a) (l-r2) ,

where

(2. 16) f.L (r, a, m= v4a (l- (213 -1) r2) (1- (2aj3 -1) r2)

- (1 +a) + (4aj3-a-l)r2.

Hence the radii of convexity of fez) are determined by the following equa­
tions:

(2.17)

(2. 18)

1+2 (2aj3-1)r+2j3 (2aj3-a-1)r2

-2(2j3-1)r3 - (213-1) (2aj3-1)r4 =0 for RosRr,

1-r
2 + f.L(r,a,m 0, or R

0
2::Rr,

1+r2 (I-a) (1-r2)

where f.L (r, a, m is given in (2. 16). After some computations, the expres­
sions (2. 17) and (2. 18), reduce, respectively, to the equations (2. 2) and
(2. 3). Also the two minima given by (2. 15) become equal to each other
for such values of a,j3 for which Ro=R1 or (2.1).

The extremal functions for two inequalities in Theorem are attained, re­
spectively, for the functions given by

(2.19) f ( ) = 1+ (213-1) (2aj3-1)
1 z 2 (l+ (213 -1) 2)

1 (1- (2j3-1)iz)2
og 1-z2

'1 1+z + ij3(l-a)og--
1- z 1+ (213 - 1)2

at z=ir, and
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(2.20) fl(z)
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where b is determined by the equation

1-2a/3br+ (2a/3-1)r2

1-2/3br+ (2/3-1)r2
R = {a (1 - (2a/3 -1) r2

}-}

° 1- (2/3-1)r2

3. Applications

By fixing a=O, /3=1 in Theorem we get the following result, which
was obtained earlier in [3J.

COROLLARY 1. Let fE V. Then fez) maps the disk Iz I<R onto a convex
domain where R is the smallest positive root of the equation

r4-r3 -2r2 -2r+1=0.

We note that R= ~ (1+ vS) - {~ (1+ -VS)} -} =0.346··· The bound is sharp.

COROLLARY 2. Let fE V(a, 1). Let ao denote the smallest positive root of
the equation

(3.1) 80a5 -244a4+266a3 -62a2 -17a+14=0.

Then

(i) for 0 s:: a s:: ao, f is convex in Iz I<rh where rl is the smallest positive
root of the equation

(ii) for aoS::a<l, f is convex in Iz I<ri, where r2 is the smallest positive
root of the equation

(3.3)

All these bounds are sharp.

Proof. Taking /3=1 in (2. 1) we get

(3.4) (2a-1)r3 -3(2a-1)r2-3r+1=0.

Putting /3=1 in (2. 2) and (2.3) we obtain, respectively (3.2) and (3.3).
By eliminating r between (3. 2) and (3. 4) we get (3. 1).

We observe that (3. 2) coincides with a result in [1, Theorem 2. 4 (i) J
but (3. 3) does not coincide with Theorem 2. 4 (ii) in [lJ; perhaps because
of computational errors in [lJ.
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Taking a=O and .e=~- in above theorem we obtain

COROLLARY 3. Let fE V*; then fez) maps the disk Iz I< -/2 -1 onto con­
vex domain. The bound is sharp.

By replacing (a, m, respectively, by (0, I-a), (0, (20 -1) /20), and
((l-p)/(I+p), (1+p)/2) in Theorem, we get the follou'ing results.

COROLLARY 4. Let fEV*(a), (O::;;a<I). Thenf(z) maps the disklzl<R
onto a convex domain, where R is the smallest positive root in [0, IJ of the
equation

The bound is sharp.

COROLLARY 5. Let fEVa*, (o>{). Then fez) maps the disk Izl<R

onto a convex domain, u'here R is the smallest positive root in [0, IJ of the
equation

D(r-2)r3 -- (D+ 1)r2-2r+ 1=0,

where D=l-l/o. The bound is sharp.

COROLLARY 6. Let fE V(p) , (O<p::;;I). Let ro be the smallest positive root
in [0, 1J of the equation

p2 (2-r) r3 - (1- p2) r2-2r+ 1=0.

Then

(i) for O::;;r<ro, fez) is con'vex in Izl<.Jr, u'here rr is the smallest posi­
tive root of the equation

(ii) for ro ::;;r<l, fez) is COn7.JeX in Iz I<ri, where r2 is the smallest posi­
tive root of the equation

The above bounds are sharp.
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