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A SPECIAL SUBCLASS OF CLOSE TO CONVEX FUNCTIONS

O.P. AHuja

1. Introduection.

Let S denote the class of functions f(z) =z-+ X a,z* which are analytic in
a=2

the unit disk E={z: |2|<{1}. A function &S is said to be a convex fun-
ction, denoted ¢k, if

¢ (2)
Re {1+z 7 (:) }>0, (z€E).

The subclass C of S which consists of close-to—convex functions f is charac-
terized by

1. 1) Re{{;:gg }>o, 2EE

for some =K.
Let V be the family of functions fES satisfying the condition

1.2) Re {(1—2%)f'(2)} >0

for all :€E. It is known [2] that fEV is univalent and f(E) is a domain
convex in the direction of imaginary axis, that is, the intersection of f(E)
with each vertical line is connected, or empty. The class V has been, fur-
ther, studied in [3] and [4].

Let V(a, ) be the class of functions f(z) =z—|—i}2a,,z", analytic in E, and
satisfying in E the condition

1=z () —1
(=7 () —) = (=D F =D

for some a, B(0<a<1, 0<B8<1). Clearly, V(0,1)=V. Further, by fixing
a=0, =1 in (1.3) and on choosing ¢(z) =%Iog{(1+z)/(1—z)} in (1.

1), we observe that (1.1) coincides with (1.3). In fact, functions satisfy-

(1.3)
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ing (1.3), we may call, special close-to—convex functions of order a and
type Bassociated with ¢(z) =%log {A+2)/A—2)}.
We observe that by special choices of a, 8 our class, V(a, §), gives rise

to various new subclasses of §; for instance,

V=V (0, 5) = {feS: | 1—OF' @) —11<1, 25,

VA=V, (26—1)/(25) = {feS : | A1—Df’ () ~31<5, 8>3, =<},

V)=V (1—p)/1A+p), (1+p0)/2)

={fe8: 1 (A—2)f" (2) —1) /(A== f' () + D |<p,0<p<1, z€E},
V*(@=V(0,1—a)={feS: | 120" (2) —1/ Q) | <1/ Q2a),
0<a<l, z<E}.

Since the class V{(a, 8) includes various subclasses of §, a study of its
convexity properties will lead to a unified study of these classes. In this
paper, we determine the radii of convexity for the class V(a, 8). In par-
ticular, we deduce the corresponding results for the classes V*, V;*, V(o)
and V*(a).

2. The Radii of Convexity for V(a, §).

THEOREM. Let f€V(a, 8). Let ry be the smallest positive root in (0,1] of
the equation

@1 ©@8—1)(2aB—1) r—2)r3—2(8+af+2a2—1)r2—2r+1=0.

Then
@) for 0<r<lry, f is convex in |z|<r;, where r, is the smallest positive
root in (0,1) of the equation

(2.2) @8- (A—2ap)r*+2(1—28)r3+282af—a—1)r?
+2@2af—1)r+1=0;

(@) and for ro<r<1, f is comver in |z|<lry where ry is the smallest
positive root in (0,1) of the equation

2.3) a(l—a)(@2—1)r8—2aB(1l—a)r’+ (2a%f—2aB+4+2a%?—6a)rt
+2ap(1—a)rt—a(l—a) =0.
The above bounds are sharp.
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Proof. let feV{a, B); then the condition (1.3) coupled with "an appli-
cation of Schwarz’s lemma gives

—22) £ (s :1+(2aﬁ—1)w(z)
@ A= & = T op—2 wt) -

where w is analytic function in E and satisfies the condition w(0)=0 and
lw(z) |[<1 for z€ E. Taking logarithmic derivative of (2.4), we find that

S (z) _ 1422 28(1—a) 2w’ (z)
@5 I T T AT @D w®) (1t Caf-Da@)

Taking the real part of (2.5) of both sides,

(2.6) Re{1+z);,((zg} ReH+z} —28(1—a)

{ 2w’ (2) }
A+ 2—Dw(2)) Q1+ Qaf—Dw(z))

Since @¢(z) =w(2)/z is also a bounded analytic function in E, we have by
[5, p. 168]

2R 0B |21y () < TR, (121
or
@7 7w’ (&) —w() | < 2D 1

Equation (2.6) yields in conjunction with (2.7),

2f’ (2) r2 1 _ . (2ap—1)
(2.8) Re{1+ ) }21+r2+25(1— ){Re((Zﬁ Dp()+ o) )

_ 21 @28—1)p(z) — (ap—1) 12— [1— p(z)[Z} S+af—1
A-r) ()] 51—a) °

where

o 1t @ap—Dw(z)
2.9 P& =G Dw()

We observe that the transformation (2.9) maps the disk |w(z)|<r onto
the disk |w(2) —a|<d, where

_1-0@p-1) Qap—Dr* ,_ 280-a)r
1-@g—D¥* 1—(2—-1)%%"

Setting p(z) =a+u+iv, R=|p(z)| and taking M(xu, v) as the expression on
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the right hand side of (2.8), we get

2.10) M(s, v)= }:L:Z + 2,8(11—a) {28—1) (a+u) —2(8+ap—1)
_1=0@2B—1)%* d2—u?—1? T (2af—1) (a+u) }
1—72 R R? .

On differentiating (2. 10) partially with respect to o,

oM (u,v) __ vR*N(u, v)
0v 26(0—a)

where

+ (1—-028—1%2 (d*—u2—v>)R

1—72

N(u, v) =2(1—2ap) (a+u)

+ 20— C8—1)*)R3
1—72 ‘
It is easily seen that N(x, v) >0 and so the minimum of M(x, v) on every
chord z=constant is attained when v=0. Thus the minimum of M(x, v)
inside the disk |p(z) —al|<d is attained on the diameter v=0. Setting v=0
in (2.10), we obtain

LIR=M @, 0) =175 +ga—ma=s B0~ DIER
+ap— (2af—1)r2) R —a(1—-26~ D)%% —
B+af—1
80 —a)

for a—d<R<a-d. Thus it ‘follows that absolute minimum of L(R) in
(0, ) is attained at

ew  nefegsge

and equals

_1—r2 1
(2.12) L(Ry) 1572 + —a) 1—79)

{Via(1— (26— 2 L(OA— (2ef—1)r?)
—(1+a)+Udap—a—1)r%.

We note that Ry<la-+d. However, R, may not always be greater than a—
d. Hence the minimum of L(R) is attained at
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a—g 1t @ap=Dr

(2.13) Ri=a—d— 0O,
and is equal to

(2. 14) L(R1)= 1"7’2 Zﬂ(l—a)r

1+72 (A+@8—1Dr) A+ Caf—1)r)
Therefore, from (2.12) and (2.14) we get

(2.15) Re {1+ ZJ{,"(S) }

1+2©2aB—1)r+282af—a—1)r2—2(28—1)r*— (28=1) Qap—1)r* .
1+ A+ @C—1)r) A+ Caf—1)r) ’

2 for Ro < Rl,

1—r2 ©(r, a, B) -
2 Ty A—r 17 Fozh

where
(2.16) ulr,a, )= vVia(1— (28—1)r%) (1— (2a—1)72)
—(1+4a)+H@aB—a—1)r2

Hence the radii of convexity of f(z) are determined by the following equa-
tions:

2.17) 1+2@aB—1Dr+28@2af—a—1)r?
—20@2p—1)r3—(28—1) 2aB—1)r*=0 for Ry<R,,

1—r2 (r, a, _

(2.18) s 8 =0, or Ry=Ry,
where p(r,a, B) is given in (2.16). After some computations, the expres-
sions (2.17) and (2.18), reduce, respectively, to the equations (2.2) and
(2.3). Also the two minima given by (2.15) become equal to each other
for such values of a, 8 for which Ry=R; or (2.1).

The extremal functions for two inequalities in Theorem are attained, re-
spectively, for the functions given by

14(28—1) @af—1) - 14z . if(1—a)
@19 AO="FdTerny 81— T1r e

log (1= @B=Diz)?

1—=22

at z=ir, and
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(oY — 1+2iafbz— (2af—1) 22 -
2. 20) () A 2ipbe— (2B—1)25) (1—7) at z=ir,
where b is determined by the equation

1—2afbr+ Qaf—1r* _ 5 _ {a(l—- (2af—1)r? }1}
1—28br+ (28—1) 72 0 1—(28—1)r?

3. Applications

By fixing =0, BS=1 in Theorem we get the following result, which
was obtained earlier in [3].

COROLLARY 1. Let fEV. Then f(z) maps the disk |z|<R onto a convex
domain where R is the smallest positive root of the equation

rt—r3—272—2r+1=0.
We note that R=% A++45)— {% a-+ 1/?)}%=0. 346-++ The bound is sharp.
COROLLARY 2. Let feV{(a,1). Let ay denote the smallest positive root of
the equation
3.1) 80a® —244at+266a° — 6202 —17c+14=0.
Then

() for 0<a<ay, f is convex in |z|<r;, where ry is the smallest positive
root of the equation

(3.2 (A—2a)rt—2r*—20—a)r2+2@2a—1)r+1=0;

(i) for ap<a<l, f is comvex in |z|<rs?, where ry is the smallest positive

root of the equation

3.3 azt—2az*+4(1—a)2?+2az—a=0.
All these bounds are sharp.

Proof. Taking =1 in (2.1) we get

3. 4) Qa—1)r3—3Qa—1)r2—3r+1=0.

Putting =1 in (2.2) and (2.3) we obtain, respectively (3.2) and (3. 3).
By eliminating r between (3.2) and (3.4) we get (3.1).

We observe that (3.2) coincides with a result in [1, Theorem 2.4(i)]
but (3.3) does not coincide with Theorem 2.4 (ii) in [1]; perhaps because
of computational errors in [1].
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Taking a=0 and ,8=% in above theorem we obtain

COROLLARY 3. Let f&V*; then f(z) maps the disk |3|< /2 —1 onto con-
vex domain. The bound is sharp.

By replacing (a, ), respectively, by (0,1—a), (0, (20—1)/20), and
(A—p)/(A+p), (1+p)/2) in Theorem, we get the following results.

COROLLARY 4. Let feV*(a), (0<a<1). Then f(z) maps the disklz|< R
onto a convex domain, where R is the smallest positive root in [0,1] of the
equation

1—2a) r—2)r*—20—a)r*—2r+1=0.
The bound is sharp.

COROLLARY 5. Let f& V;*, (5>%~). Then f(z) maps the disk |=|<R
onto a convex domain, where R is the smallest positive root in [0,1] of the
equation
D —2)r3—(D+1)r2—2r+1=0,
where D=1—1/0. The bound is sharp.
COROLLARY 6. Let feV{p), (0<p<1). Let ry bethe smallest positive root
in [0,1] of the equation
PR—=r)r—(1—p?)r2—2r+1=0.
Then
Q) for 0<r<rg, f(2) is convex in |z|<ry, where ry is the smallest posi-
tive root of the equation

p°rt—=2pr3— (14-p*)r*—20r +1=0;

(i) for ro<r<{1, f(z) is convex in |z|<rs% where ryis the smallest posi-
tive root of the equation

202(1—p)at—20(1—p2) 23+20 (1+6p+p*) 22+20 (1 —p) x—20(1—p) =0.

The above bounds are sharp.
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