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Metric Antiprojections and Characterization of e-Farthest Points

by T.D. Narang
Guru Nanak Dev University, India

In the first section of this note we have studied the metric antiprojections for nearly compac:
sets and in the second section we have introduced the notion of ¢-farthest points and have giver o
characterization of such points.

1. Metric Antiprojections for Nearly Compact Sets.

Let X be a normed linear space and K a non-empty bounded subset of X. The magp
Q:X—K
where
Q=)= yeK : lz—yl=suplz—z|} €Fx(2)

is called the metric antiprojection or the farthest point map associated with the set K. Every eleme.
ye=Q(x) is called a farthest point of K for . K is called remotal (7] if Q(z)+¢ for each zz=
and uniquely remotal (7} if Q(x) consists of exactly one point for each z=X. A sequence <g,~
in K is called a mazximizing sequence for zx if

lim|z—g.,l{=supliz—z||.

oo ek

If for each r=X every maximizing sequence for = has a subsequence converging to an element
K then K is called nearly compact(7) (or M-compact{8) or 2compact{2]). Clearly every compact s:.
is nearly compact but not conversely (cf. (77).

A subset A of a metric space X is called residual in X if X\A is a set of first Baire category i:
X. According to the classical Baire’s theorem, any residual subset of a complete metric space .-
everywhere dense in the space.

Edelstein {47 proved that if X is a uniformly convex Banach space and K is a closed bounde:’
subset of X then except on a set of first Baire category, the points in X have farthest pointsin A’
The theorem was generalized by Asplund (1] to reflexive locally uniformly convex spaces and b
Panda and Kapoor (9] to reflexive CLUR-spaces. Ka-Sing-Lau [6] proved that the result is true i-.
any weakly compact subset of a Banach space. Using this result of Ka-Sing-Lau, Zhivkov {i¢
proved that if K is a weakly compact subset of a strictly convex smooth Banach space X ther
except on a set of first Baire category the points of X have unique farthest points in K and it was
remarked that Asplund’s result can be presented in the following stronger form: Antiprojections

anerated by any clused and bounded subset of a reflexive locally uniformly convex Banach space
is single-valued except on a set of first Baire category.

We give below the following variant of this result:



Theorem: Let K be a nearly compact subset of a strictly convex Banach space X and let Q : X—K
be the antiprojection. Then Q is single valued and continuous on a residual part of the space X i.e. on
a set dense in the space and consequently Q is uniquely remotal with respect to a dense subset of the
space.

The following two lemmas will be used in the proof.

Lemma 1 (10): Let F: X—Y be a multivalued mapping from a topological space X into a metric
space Y. Suppose the following condition (@) is satisfied:

[(a) If F (z)#¢ for x=X then for every open V2x a point 2=V exists such that F(2)+¢ and
F is both single-valued and upper semi-continuous at z.) Then the set ESp={z=X: the set F(z) is
either empty or singleton) is residual in X.

Lemma 2 [2): If K is a nearly compact subset of a Banach space X then Q: X—K is upper semi-
continuous and has nonempty images.

Proof of Theorem: Let z,=X. Since K is nearly compact, Qzry*¢ (Lemma 2). Let y,&=Qz,.
Since X is strictly convex, at every point x from the set

{z: =20+t (2o~ 30) 120}
the antiprojection Q is single-valued [10). Moreover, lim z,=x, when {—0 and this means that we
can find points arbitrary close to z, at which Q is both single-valued and upper semicontinuous
(Lemma 2). Then by Lemma 1, the set S¢={zr=X: Qz has exactly one element} is residual in
X i.e. there exist a subset D dense in X such that Q is single-valued on D and consequently cont-
inous on D (for single-valued mappings upper semi-continuity is same as continuity).

Remark: For compact sets the validity of the above result was remarked by Zhivkov (10].

2. Characterization of c-Farthest Points.

In the theory of nearest points R.C. Buck (3] introduced the notion of ‘elements of e-approximation’
(good approximation) and gave a characterization of elements of e-approximation. In this section we
introduce an analogous notion ‘elements of e-farthest points’ and give a characterization of such
elements. In the particular case, when ¢=0, we get a characterization of farthest points given in
(5]~Theorem 3.1.

Let K be a bounded subset of a normed linear space X, x&X and ¢£>0. An element kK is
said to be & farthest point of z (by means of elements of K) if

lz—koll >sup {[z—y[ : y=K} —e
We shall denote by Fx (z,¢) the set of all elements of e-farthest points of x. In particular, for
e=0, We find again the elements of farthest points of = and respectively the sets Fx(z). One of
the advantages of considering the sets Fx(z,e) with ¢>>0, instead of the sets Fx(x) is that the sets
Fx(z,¢) aré always non-empty for £>0 and K bounded.

The following theorem gives a characterization of e-farthest points.
Theorem: Let X be a normed linear space, K q bounded subset of X and :cEX For an element
k=K and >0 the following statements are egquivalent:
1°. kh&Fr(z,¢)
29, There exists fy=X* such that
Ifoll =1 2.1



3.

Solz—ko) >§glgllz—yll—e 2.2

There exist fo=X* satisfying (2.1) and
| fo (x—ko)l>§lé§||$—yll—e 2.3)

Proof: 19==>2°, By a Corollary to Hahn Banach theorem there exists fy=X¥* such that

Ifoli=1

and fo (z—ko)=|ls—koll>§\égﬂx—yﬂ—e

N== 3° is obvious.

30==1% consider

lz—koll 2| fo(x— ko) I>§g§llx—yll —¢

Thus kye=Fx(z,6).

Remark: In the particular case when e=0, above theorem reduces to Theorem 3.1 (5] on the
characterization of elements of farthest points.
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