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Extensions of the Sum of Integers Formula

By Rodney T. Hansen
Whitworth College Spokane, Washington, U.S.A.

Beginning with the sum of » ones, which we denote as S,M=1+1+.. +1—T, and then consi-
dering the formula S,,‘z’z1+?,+...+n=—”-(”—2+l, we typically investigate the sum of squares,
then the sum of cubes, etc. The shortcoming of this process is that the formulas found or proved

are actually quite different in form. It would seem that an alternative natural path to take would

be to consider sums of z terms which respectively equal n<n+1%("+2) , a(nt+1) ("4+2> (n+3) ,

_1 B
%— kI_I; (n+i), where il'ol (n+¢) denotes the product (#+0) (z+1)...(n+k—1). The article realizes

such a development.
The process of going from one sum to the next is elementary once we observe that the second
sum may be considered as an extension of the first. We write
Sa®=1+42+...+n=1:1+12+... +1-n,
and hence a possible next sum may be
Sa®=1e1:24+12:3+... 4 1Lone (+1).
To evaluate this sum, we use the earlier given formulas found in the hierarchy

1.2 23 3+4 n(n+1)

(3)= see —

Sa 2( 3 TTg oty ot )
=21+ A+ +A+2+3) +.. + (1+2+.. 1)),

using S, @ =JZ‘(_”‘2iD_,

=2+ #-1D2+ #—2)3+...4+ m—(n—1))n),
collecting, respectively, the 1’s, 2’s, ...,a’s, of the previous sum,
=2n(1+2+...+72)— 12423+ ...+ (n—1)n))

=z(n-”-(%l— (SO =n(+1))).

Therefore, S,3= ﬂ_(yi-_*-_l_)s_(_nﬂ)_ '

Continuing, let S,%=1+1:2:3+12:3¢4+123+4°5+...-+1+n-(n+1)+(n+2), and expressing the
addends in terms of “S,” notation, we have
S, =3(S;® +8,¥ +8;® +...+5,%)
=3((1+1+2)+ (11-24+1:2:3) +(1+1+2+1+2:3+134)+...+(1+1-2+1+2:3+1-3-4
+oetlene @+
=3 (1-2)+(r—-D 2D+ #B-2) B +...+ (= (1)) (n(n+1))),



by-collecting like terms,
=3(n(1-2+2:3+34+..ctn(n+1)) — (1°2:3+2:3°4+++ (a—1)a(n+1)))
=318, — (S, —n(n+1)(n+2))).

Thus, §,4=-fn(a+1) (3+2) (#+3).
Now, if ever, we are prepared for the “inductive leap” which we glorify to theorem status.
Theorem. Let n and m>2 be positive integers. If we define S,."")=";‘i 1@ E+HD..... G+m—2),
then S,""’:-i— '_"I? (n—1i).
=0
Proof. We proceed by induction on m, noting the theorem has already been shown valid for

B~
m=2,3, and 4. Assume as the induction hypothesis that for any positive integer =, S,.""=% IZO

(n-+i) where £>2 is a fixed but arbitrarily chosen positive integer. To show: §,%*= k-}-
From the given definition,
SuI=3 1) G+1)-nG+R=1)

=101020300 (k) +102¢3¢ (k+1) + 1+34... (R+2) +
et lea(r+1D)(n+2)...(n+k—1)
=k(S, ™ +8,® £ 8,® ... +85,®), by induction hypothesis

=H(L 16) G+ D (A= + 5, 1) G+ D G+E-2) +

%l(t’>(i+l>.--(i+k—2)+.-.+§,_,: l(i)(i+1)...(i+k—2))

=h((A (12 (B~1)) + (—1) (203..8) + (3—2) (3+4... (k+1))
Fod(B—(2—~1)) (#(n+1)...(n+k—2))), by grouping like terms
=k(nS,® — (S, **V —n(n+1)...(n+k—-1)).
Hence,

(R+1)S,®+D =k(n (—i— kI_Il (n+i))+ kkI—I: (n+1) )using induction hypothesis again,
i=0 f=

k~1
=(7 n+d) b,
=0
and so,

1 L] , .
B4H1) e — l th f.
S, FHl = F !:Io (n+1i) completing the proo



