A Note on Solvability of a Compact Perturbation of Some Linear Fredholm Operators

By Sang Og Kim

In this paper, we show some conditions for a compact perturbation of a linear Fredholm operator to have a solution.

1. Preliminaries

Definition 1. Let X, Y be Banach spaces and $A: X \rightarrow Y$ a linear map. A is called a *Breake*; of index z if

- a) Ker A has finite dimension d
- b) Range A is closed with codimension $d^*=d-p$.

Lemma 1. Let M be a closed subspace of a topological vector space X. If X is locally convex and has finite dimension, then M is complemented in X, i.e. there exists a closed subspace N of X with $X = M \oplus N$.

Proof. See [3].

Hence if A is a continuous linear Fredholm operator $X \rightarrow Y$, then $X = KerA \oplus X_2$ for some closed subspace of X by lemma 1.

Let M and N be two C^{∞} -manifolds of dimension n and m respectively and $f: M^n \to N^m$ be in $C^1 \cap C^{n-m+1}$. We define the rank of f at $p \in M$ to be the rank of the $m \times n$ matrix $(\partial(y_i \circ f)/\partial x_j)$, where (x, U) and (y, V) are coordinate systems around p and f(p) respectively. The point p is called a *critical point* of f if the rank of f at p is less than m (the dimension of N); if p is not a critical point of f, it is called a *regular point* of f. If p is a critical point of f, the value f(p) is called a *critical value* of f. Other points in N are *regular values*; thus $q \in N$ is a regular value if and only if p is a regular point of f for every $p \in f^{-1}(q)$.

Definition 2. Let X_0 and Y be C^{∞} -manifolds of dimension n and $X \subset X_0$ be open with compact closure. Assume $\phi: \bar{X} \to Y$ is continuous and C^1 in X. If $y_0 \in Y - \phi(\partial x)$ is a regular value of ϕ and $\phi^{-1}(y_0) = \{x_1, \ldots, x_k\}$, define $d(\phi, y_0, X) = \sum_{j=1}^k sgn|J\phi(x_j)|$, the Browner degree for ϕ .

Suppose now that ϕ is known to be a C^1 -mapping of $\overline{Q} \to \mathbb{R}^N$. Then by the Sard's theorem, we can find a sequence of regular points $\{y_n\}$ such that $y_n \to y_0$. We then define the Brouwer degree as

$$d(\phi, y_0, \Omega) = \lim d(\phi, y_n, \Omega)$$
.

Furthermore, if ϕ is only known to be continous in Ω , there is a sequence of C^1 -mappings $\phi_n \rightarrow \phi$ uniformly on \mathbb{F}_n and we set

$$\vec{a}(\phi, y_0, \Omega) = \lim_{n\to\infty} d(\varphi_n, y_0, \Omega).$$

Deministra 3. (a) Let D be a bounded domain in a Banach space X. If the compact mapping

 $C: D \rightarrow X$ has finite dimensional range (i.e. $C(D) \subset X_n$, a finite dimensional subspace of X), we define the Leray-Schauder degree of I+C at p relative to D by

$$deg (I+C, D, p) = d(I+C, D \cap X_n, p)$$

if the right hand side is defined.

(b) For a general compact map $C: D \to X$, approximate C by a sequence of compact mappings with finite dimensional range $C_n: D \to X_n$ such that $\sup_{x \in R} \|C_n x - Cx\| \le 1/n$. Then define

$$deg (I+C, D, p) = \lim_{n\to\infty} d(I+C_n, D, p)$$

by (a).

Definition 4. Let S be a closed subset of a Banach space X. Suppose f is a fixed continuous mapping of $X \rightarrow Y$. Then g_0 and g_1 are compactly homotopic on S if there is a continuous compact mapping $h(x,t): S \times [0,1] \rightarrow Y$ with

$$g_0(x) = f(x) + h(x, 0)$$
 and $g_1(x) = f(x) + h(x, 1)$ and such that $g(x, t) = f(x) + h(x, t) \neq 0$ on $S \times [0, 1]$.

Lemma 2. If y_0 is a regular value of ϕ , then $d(\phi, y_0, X) = deg(\phi, X, y_0)$.

Proof: See [2].

Lemma 3. Suppose D is a bounded domain in a Banach space X and $f-p \in C_I^0(\partial D, X) = \{g \mid g=I+C, g \neq 0 \text{ on } \partial D, C: \partial D \rightarrow X \text{ is continuous and compact} \}$. Then

(a) (homotopy invariance)

If $(h(x,t)-p) \in C_I^0(\partial D,X)$ for $t \in [0,1]$ is a compact homotopy with h(x,0)=f, then deg(f,p,D)=deg(h(x,t),p,D).

(b) (Cartesian product formula)

If $X=X_1 \oplus X_2$ with $D_i \subset X_i$, $f=(f_1,f_2)$ with $f_i: D_i \to X_i$, $D=D_1 \times D_2$ and $p=(p_1,p_2)$, then $deg(f,p,D)=deg(f_1,p_1,D_1)$ $deg(f_2,p_2,D_2)$ provided the right-hand side is defined.

Proof: See [1].

2. Solvability of a compact perturbation of Fredholm operators

Proposition 1. Let X, Y be real Banach spaces and $A: X \rightarrow Y$ a bounded linear map and Fredholm. Let $K: X \rightarrow Y$ be a (nonlinear) compact map such that

- (a) $K(X) \subset Range A$
- (b) K is uniformly bounded.

Then Ax+K(x)=0 has a solution.

Proof: Since A is a Fredholm operator, A can be written

$$A = Ker A \oplus X_2$$

by lemma 1. If we restrict A on X_2 , then clearly A^{-1} is linear.

$$z+K(A^{-1}z)=0.$$

Let $T(z) = K(A^{-1}z)$. For R sufficiently large, (I+T)(z) = 0 has no solution for ||z|| = R, since K is uniformly bounded. Hence $deg(I+T, ||z|| \le R, 0)$ is defined. By the homotopy invariance in lemma 3, we see that for $0 \le t \le 1$,

$$deg(I+T, ||z|| \le R, 0) = deg(I+tT, ||z|| \le R, 0) = 1.$$

Hence z+T(z)=0 has a solution, i.e. $Ax_2+K(x_2)=0$ has a solution.

Lemma 4. Suppose X is a topological vector space, Y is an n-dimensional subspace of X. Then every isomorphism of C^n onto Y is a homeomorphism.

Proof: See [3].

Let X, Y be Banach spaces and $A: X \to Y$ a continuous linear map which is Fredholm of index 0. Decompose $X = (X_1 = KerA) \oplus X_2$, $Y = (Y_1 = R(A)) \oplus Y_2 = QY \oplus (I-Q)Y$, where $Q: Y \to Y_1$, a projection.

Proposition 2. Let $K: X \rightarrow Y$ be a uniformly bounded (nonlinear) compact map for which there exist positive constants R_0 , ε such that

- (a) $(I-Q)K(x_1+x_2) \neq 0$ for $x_1 \in X_1$, $x_2 \in X_2$ and $||x_1|| \geq R_0$, $||x_2|| \leq \varepsilon ||x_1||$.
- (b) Leray-Schauder degree of the map $(I-Q)K(x_1)$ for $||x_1||=R_0$ into $Y_2-\{0\}$ at the origin is not zero. Then Ax+K(x)=0 has a solution.

Proof: Applying Q and (I-Q) to the equation Ax+K(x)=0, we see that it is equivalent to the system

$$Ax_2+QK(x_1+x_2)=0$$

 $(I-Q)K(x_1+x_2)=0$

Writing $z=Ax_2$ we obtain as in the proof of proposition 1,

$$z+QK(x_1+A^{-1}z)=0$$

 $(I-Q)K(x_1+A^{-1}z)=0$

Since A is of index zero, X_1 and $(I-Q)Y=Y_2$ have the same dimension d. Therefore there is a linear isomorphism $B: X_1 \to Y_2$ which is a homeomorphism by lemma 4. Hence setting $Bx_1=y_2$, we rewrite the system as

(*)
$$z+QK(B^{-1}y_2+A^{-1}z)=0$$
$$(I-Q)K(B^{-1}y_2+A^{-1}z)=0$$

Note that the left-hand sides of these equations may be viewed as an operator of the form I+C, C: compact, mapping $y=z+y_2 \equiv Y$ into Y. Here

$$C(z+y_2) = K(B^{-1}y_2 + A^{-1}z) - y_2$$

We claim that the degree of the map in a large ball $||y|| \le R$ is defined. For suppose (*) has a solution in a large ball ||y|| = R. Then

$$||z|| = ||QK(B^{-1}y_2 + A^{-1}z)|| \le M$$

for some constant M by the uniform boundedness of K.

If we take y_2 so that $||y_2||$ be large enough so as to be $||A^{-1}||M < \varepsilon ||B||^{-1} ||y_2||$ which is possible if R is large, we have

$$||A^{-1}z|| \le ||A^{-1}||M < \varepsilon ||B||^{-1} ||y_2|| \le \varepsilon ||B^{-1}y_2||.$$

Then we must have $(I-Q)K(x_1+x_2)=(I-Q)K(B^{-1}y_2+A^{-1}z) \neq 0$, by hypothesis (a). This is a contradiction. Hence (*) cannot have a solution y on ||y||=R, R large. Similarly for $0 \leq t \leq 1$,

$$F_t(y):z+tQK\ (B^{-1}y_2+A^{-1}z)$$

$$(I-Q)K(B^{-1}y_2+tA^{-1}z),$$

we have $F_t(y) \neq 0$ for ||y|| = R large. By the homotopy invariance $deg(F_t, ||y|| \leq R, 0)$ is independent of t. But the map F_0 is simply

$$z+y_2 \mapsto z+(I-Q)K(B^{-1}y_2)$$
.

This is a product map. Hence by lemma 3,

$$deg(F_0, ||y|| \leq R, 0) = deg[(I-Q)K(B^{-1}y_2), ||y|| \leq R, 0].$$

Since B is an isomorphism,

$$deg[(I-Q)K(B^{-1}y_2), \|y\| \leqslant R, 0] = \pm deg[(I-Q)K(x_1), \|x_1\| \leqslant R_0, 0] \neq 0$$

by (b). Therefore (*) hence Ax+K(x)=0 has a solution.

References

- 1. M. Berger, Nonlinearity and Functional Analysis, Academic press, 1977.
- 2. L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Sciences, 1973~4.
- 3. W. Rudin, Functional Analysis, McGraw-Hill, 1974.