A Note on the Prime Spectrum of a Commutative Ring

By Choi Hyo Il

1. Introduction

Let X be the set of all prime ideals of a commutative ring A with identity. For each subset of A, we denote by V(E) the set of all prime ideals of A which contain E. It is well known that the sets V(E) satisfy the axioms for closed set in a topological space. The set X of prime ideals of A, with the topology (Zariski) whose closed sets are the sets V(E), where E runs through $\mathcal{P}(A)$, is called the *prime spetrum of* A and denoted by $\operatorname{Spec}(A)$. For each $f \in A$, we denote by X_f the set of prime ideals of A not containing f. Then $X_f = X - V(f)$ is therefore an open set. Let $\S: A \to B$ be a ring homomorphism. Then for $q \in \operatorname{Spec}(B)$, $\S^{-1}(q)$ is a prime ideal of A, that is, $\S^{-1}(q) \in \operatorname{Spec}(A)$. Hence \S defines a mapping \S^* from $\operatorname{Spec}(B)$ into $\operatorname{Spec}(A)$ by $q \to \S^{-1}(q)$.

The purpose of this note is to investigate some relations between a ring homomorphism $\S: A \rightarrow B$ and a induced map $\S*: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$.

The terminologies and notations used in this note will be found in [3], [4]. In particular, we will denote by $\mathfrak{N}(A)$ the set of all nilpotent elements of A (nilradical of A). In this note, we will assume that all rings are commutative ring with identity.

2. Main Results

Through this section, $\S: A \rightarrow B$ is a ring homomorphism, $X = \operatorname{Spec}(A)$, $Y = \operatorname{Spec}(B)$ and $\S^*: Y \rightarrow X$ is a induced map.

Lemma 2.1 For each $f \in A$, $X_f = \phi$ if and only if f is a nilpotent element of A.

proof. Assume that f is nilpotent, then $f^n=0$ for some n>0. Thus $f \in p$ for all $p \in X$, which implies V(f)=X. That is, $X_f=\phi$.

Conversely, suppose that X_f is empty. Then V(f)=X. Hence $f \in p$ for all $p \in X$. Since the nilradical $\mathfrak{R}(A)$ of A is the intersection of all prime ideals of A, we see that f is a nilpotent element.

Theorem 2.2 For $f \in A$, $\S^{*-1}(X_f) = Y_{\phi(f)}$ and hene \S^* is continuous.

proof. A prime ideals p is a member of $\S^{*-1}(X_f)$ if and only if $\S^*(p) \in X_f$. By definition of X_f , $\phi^*(p) \in X_f$ if and only if $f \notin \S^*(p)$. Since $\S^*(p) = \S^{-1}(p)$, $f \notin \S^*(p)$ is equivalent to $f \notin \S^{-1}(p)$, that is, $\S(f) \notin p$. Moreover, this is equivalent to $p \in Y_{\phi(f)}$. This completes the proof.

Theorem 2.3 If \S is surjective, then \S^* is a homeomorphism of Y onto the closed subset $V(Ker(\S))$ of X.

proof. By theorem 2.2, f^* is continuous. We have to show that f^* is injective, surjective and that f^{*-1} is continuous.

- i) §* is injective: For p, $q \in Y$, §*(p)=§*(q) implies that $\$^{-1}(p) = \$^{-1}(q).$ Thus we have p = q.
- ii) §* is surjective: For each $p \in V(\text{Ker}(\S))$, we must find $q \in Y$ such that $\S^*(q) = p$. Since § is surjective, we have $A/\text{ker}(\S) \cong B$ by lst Isomorphism theorem. Moreover, $p/\text{ker}(\S)$ is a prime ideal of $A/\text{ker}(\S)$. Thus there exists an ideal q of B, which corresponds to $p/\text{ker}(\S)$. Then $\S^*(q) = \S^{-1}(q) = p + \text{ker}(\S) = p$.
- iii) ϕ^{*-1} is continuos: Since \S^* is bijective, \S^{*-1} is well defined. By Treorem 2.2, $\S^*(Y_{\phi(f)}) = X_f$. Hence \S^* is open mapping and this means that \S_*^{-1} is continuous.

Theorem 2.4 If \S is injective, then $\S^*(Y)$ is dense in X. Furthermore, $\S^*(Y)$ is dense in X if and only if $Ker(\S) \subseteq \Re(A)$.

proof. If § is injective, then $Ker(\phi) \subseteq \mathfrak{N}(A)$. Therefore, it suffices to show that the latter statement holds.

First assume that $\S^*(Y)$ is dense in X. Let $f \in \text{Ker}(\S)$. Suppose $X_f \neq \phi$. Then $\S^*(Y) \cap X_f \neq \phi$. Hence there exists \mathfrak{q} in Y such that $\S^{-1}(\mathfrak{q}) \in X_f$. That is, $\mathfrak{q} \in \S^{*-1}(X_f)$. By Theorem 2.2, we have $\S_*^{-1}(X_f) = Y_{\psi(f)} = \phi$. Thus $\mathfrak{q} \in \phi$, a contradiction. Hence $X_f = \phi$. By Lemma 2.1, we have $f \in \mathfrak{M}(A)$. That is, $\text{Ke.}(\S) \subseteq \mathfrak{M}(A)$.

Conversely, suppose $\operatorname{Ker}(\S) \subseteq \mathfrak{R}(A)$. Assume that $X_f \neq \phi$. Then f is not a nilpotent element. Hence $\S(f)$ is not nilpotent. Thus by Lemma 2.1, we have $Y_{\phi(f)} \neq \phi$. Moreover, $\S^{*-1}(X_f) = Y_{\phi(f)}$ by Theorem 2.2. This implies that there exists $\mathfrak{q} \in \S_*^{-1}(X_f)$. That is, $\S^*(\mathfrak{q}) \in X_f$. Therefore, $X_f \cap \S^*(Y) \neq \phi$ and hence $\S^*(Y)$ is dense in X.

References

- [1] Hideyuki Matsumura, Commutative Algebra, The Benjamin Pub. Co. (1980)
- [2] James Dugundji, Topology, Allyn & Bacon, Inc. (1968)
- [3] M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Inc. (1969)
- [4] Nicolas Bourbaki, Commutative Algebra, Addison-Wesley Publishing Co., Inc. (1972)