Acyclic Orientations of Matroids

By Yuon Sik Kim Seoul National University, Seoul, Korea

1. Introduction

The origin of matroids is the paper of Whitney[3] where we may see how a finite subset of a vector space over a fields yields a matroid. However matroids do not capture certain sign properties of vector spaces over *ordered* field. Recently, the properties of positive dependence relation[2] showed the structure of an oriented matroid.

The present paper is devoted to proving that an extreme point P in an acyclic oriented matroid has a signed cocircuit Y such that $Y^+=P$.

2. Basic Concepts and Notations

A signed set X is a set X, called the set underlying X, and a mapping $sg_X : X \to \{-1, 1\}$, called the signature of X. A collection of two sets $X^+ = \{x \in X : sg_X(x) = 1\}$ and $X^- = \{x \in X : sg_X(x) = -1\}$ is a partition of X. The opposite of X, denoted -X, is the signed set having $(-X)^+ = X^-$ and $(-X)^- = X^+$. If X is a subset of some set X, then X will be called a signed subset of X.

An oriented matroid \hat{M} on a finite set E is defined by an ordered pair (E, Θ) where Θ is a collection of non-empty signed subsets of E, called *signed circuits*, such that:

- (1) If X_1 , $X_2 \in \Theta$, $X_1 \subset X_2$, then $X_1 = X_2$ or $X_1 = -X_2$.
- (2) If $X \in \Theta$, then $X \neq \phi$ and $-X \in \Theta$
- (3) (Signed elimination property)

If X_1 , $X_2 \in \Theta$, $x \in (X_1^+ \cap X_2^-) \cup (X_1^- \cap X_2^+)$, then there exists $X_3 \in \Theta$ such that $X_3^+ \subset (X_1^+ \cup X_2^+) \setminus x$ and $X_3^- \subset (X_1^- \cup X_2^-) \setminus x$.

If $M=(E,\Theta)$ is an oriented matroid, the above condition (3) is equivalent to the following condition:

(3') If X_1 , $X_2 \in \Theta$, $x \in (X_1^+ \cap X_2^-) \cup (X_1^- \cap X_2^+)$ and $y \in (X_1^+ \setminus X_2^-) \cup (X_1^- \setminus X_2^+)$ then there exists $X_3 \in \Theta$ such that $X_3^+ \subset (X_1^+ \cup X_2^+) \setminus x$, $X_3^- \subset (X_1^- \cup X_2^-) \setminus x$ and $y \in X_3$. [1]

For a collection Θ of signed sets, let $\underline{\Theta} = \{\underline{X} : X \in \Theta\}$. If $\hat{M} = (E, \Theta)$ is an oriented matroid, then $\hat{M} = (E, \Theta)$ is a matroid. [3]

Conversly, let M be a matroid on E with the circuits \mathcal{C} , and \hat{M} be an oriented matroid on E with the signed circuits Θ . If $\underline{\Theta} = \mathcal{C}$, $\Theta = -\Theta = \{-X : X \in \Theta\}$, then Θ is called a *circuit signature* (or *orientation*) of M. Let $M^* = (E, \mathcal{C}^*)$ be the dual matroid of M where \mathcal{C}^* is the set of cocircuits of M. Accordingly, a cocircuit signature Θ^* of M is a circuit signature of M^* .

We have the relation between Θ and Θ^* such that;

(4) (Orthogonality property)

If $X \in \Theta$ and $Y \in \Theta$ such that $\underline{X} \cap \underline{Y} \neq \phi$, then $(X^+ \cap Y^+) \cup (X^- \cap Y^-) \neq \phi$ and $(X^+ \cap Y^-) \cup (X^- \cap Y^+) \neq \phi$.

Let $\hat{M} = (E, \theta)$ be an oriented matroid. We define \hat{M} to be *acyclic* if \hat{M} contains no positive circuits (signed circuits X with $X = \phi$).

Let $M=(E,\mathcal{E})$ be a matroid on E with the circuits \mathcal{E} . A point of M is a closed subset of E of rank 1. A hyperplane of M is a maximal proper closed subset of E. We link hyperplanes and cocircuits:

A set H is a hyperplane of the matroid $M=(E,\mathcal{E})$ if and only if $E\setminus H$ is a cocircuit of M. (3)

Let $\hat{M} = (E, \Theta)$ be an acyclic oriented matroid. We call Y^+ an open half space of \hat{M} where Y is a signed cocircuit of \hat{M} . A hyperplane H of $\hat{M} = (E, \Theta)$ is called a facet of \hat{M} if there is a positive cocircuit Y ($Y = Y^+$) such that $E \setminus H = Y = Y^+$. And any intersections of facets is called a face of \hat{M} . In particular, an extreme point of \hat{M} is a face of rank 1.

Let $\hat{M} = (E, \theta)$ be an oriented matroid on E with the signed circuits θ , and let $e \in E$. The set $\theta \setminus e$ obtained from θ by deleting e in θ is defined by $\theta \setminus e = \{X \in \theta : e \notin X\}$. The set θ / e obtained from θ by contracting e in θ is defined by $\theta / e = Min\{X \setminus e : X \in \theta, X \setminus e = \phi\}$, where $X \setminus e$ denotes the signed set Z such that $Z^+ = X^+ \setminus e$, $Z^- = X^- \setminus e$, and $Min(\theta) = \{X \in \theta : X' \in \theta \text{ and } X' \subset X \text{ imply } X' = X\}$.

3. Main Theorem

Lemma 1. Let $\hat{M} = (E, \Theta)$ be an oriented matroid on a finite set E with a circuit signature Θ , and let $e \in E$. $(E, \Theta \setminus e)$ and $(E, \Theta / e)$ are oriented matroids.

Proof is omitted [1].

Oriented matroids $\hat{M} \setminus e$ and \hat{M} / e denote oriented matroids $(E, \theta \setminus e)$ and $(E, \theta / e)$ respectively.

Lemma 2. Let \hat{M} be an acyclic oriented matroid on E. Every face F of \hat{M} is a closed subset of E such that \hat{M}/F is acyclic.

Proof. Since F is an intersection of facets of \hat{M} . $E \setminus F$ is an union of positive cocircuits of \hat{M} . By Lemma 1, $E \setminus F$ is an union of positive cocircuits of \hat{M}/F . Therefore \hat{M}/F is acyclic. Obivously, I is a closed set.

Lemma 3. Let $\hat{M} = (E, \Theta)$ be an oriented matroid, $X_1, X_2, ..., X_n$ be positive circuits, and X be signed circuit. Then for any $e \in X \setminus \bigcup_{i=1}^n X_i$ there is a signed circuit Z of \hat{M} such that $e \in Z$, $Z^+ \subset X^+ \cup \bigcup_{i=1}^n X_i$, $Z^- \subset X^- \setminus (\bigcup_{i=1}^n X_i)$.

Proof. Suppose that Z is a signed circuit of \hat{M} such that $e \in Z \subset X \cup (\bigcup_{i=1}^n X_i)$, $Z^+ \subset X^+ \cup (\bigcup_{i=1}^n X_i)$ an $Z^- \subset X^- \cup (\bigcup_{i=1}^n X_i)$, and Z is chosen such that $|Z^- \cap (\bigcup_{i=1}^n X_i)|$ is minimal.

Let $x \in \mathbb{Z} \cap X_1^+$. By the definition of an oriented matroid, there is a signed circuit W of M suc

that $W^+ \subset Z^+ \cup X_1^+ \setminus x$, $W^- \subset Z^- \setminus x$. Hence $e \in W$. $W^+ \subset X^+ \cup (\bigcup_{i=1}^n X_i)$, $W^- \subset X^- \cup (\bigcup_{i=1}^n X_i)$ and $|W^- \cap (\bigcup_{i=1}^n X_i)| < |Z^- \cap (\bigcup_{i=1}^n X_i)|$. This contradicts the minimality of $|Z^- \cap (\bigcup_{i=1}^n X_i)|$.

Lemma 4. Let $\hat{M} = (E, \Theta)$ be an acyclic orinted matroid, P be a point of \hat{M} . If \hat{M}/P is not acyclic then there is a signed circuit X of \hat{M} such that for an element e of E, $X = \{e\}$ and $e \in \mathbb{P}$.

Proof. Suppose that \hat{M}/P is not acyclic. Then there is a positive circuit X' of \hat{M}/P . Let X' is signed circuit of \hat{M} such that $X'=X\setminus P$. Hence $X^-\subset P$. On the other hand, we have $|X\cap P|$. Therefore since \hat{M} is acyclic, there is an element e of E such that $X'=\{e\}$, $e\in P$.

Theorem 5. Let $\hat{M} = (E, \Theta)$ be an acyclic oriented matroid on E with the signed circuit Θ . A point $P \circ f \circ \hat{M}$ is an extreme point if and only if there is a signed cocircuit of \hat{M} such that $\hat{W} = F$.

Froof. If P is an extreme point of \hat{M} , then $E \setminus P$ is an union of positive cocircuits. Since \hat{M} is acyclic, \hat{M} has no loops. Hence there is a signed cocircuit Y' such that $P \subset Y'^+$. By Lemma 3, have a signed correct Z such that $Z^- \subset P$. Since \hat{M} is acyclic, $Z^- = P$. By definition $\hat{M} = \hat{M}$ a signed cocircuit Y of \hat{M} such that $Y^+ = P$.

Conversely, suppose that there is a signed cocircuit Y of \hat{M} such that Y'=P. We show that X' is a face of \hat{M} . By Lemma 2, it suffices to prove that \hat{M}/P is acyclic. Suppose that \hat{M}/P is acyclic. By Lemma 4, there is a signed circuit X of \hat{M} such that for an $e \in E$, $X'=\{e\}$ and $X'=\{e\}$ and $X'=\{e\}$. Therefore $(X'+\bigcap Y'+)\cup (X'-\bigcap Y'-)=\phi$. This contradicts the orthogonal property (4).

References

- 1. R.G. Bland and M. Las Vergnas, Orientability of matroids, J. Combinatorial Theory B., 24 (1978), 94-123.
- 2. C. Davis, Theory of positive linear dependence, Amer. J. Math., 76(1954), 733-746.
- 3. D.J.A. Welsh, Matroid Theory, Academic Press (1976).
- 4. H. Whitney, On the abstract properties of linear dependence, Amer. J. Math. 57(1935), 509-533.