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1. Introduction

The origin of matroids is the paper of Whitney[3] where we may see how a finite subset of a
vector space over a fields yields a matroid. However matroids do not capture certain sign properties of
vector spaces over ordered field. Recently, the properties of positive dependence relation(2] showed
the structure of an oriented matroid.

The present paper is devoted to proving that an extreme point P in an acyclic oriented matroid

has a signed cocircuit Y such that Y+=P.

2. Basie Concepts and Notations

A signed set X is a set X, called the set underlying X, and a mapping sgx: X—{—1,1}, called
the signature of X. A collection of two sets X*={r=X: sgx(z)=1} and X = {z=X: sgx(x)=—1}
is a partition of X. The opposite of X, denoted —X, is the signed set having (—X)+*=X" and
(—=X)"=X* If X is a subset of some set E, then X will be called a signed subset of E.

An oriented matroid M on a finite set E is defined by an ordered pair (E,8) wheré 8 is a
collection of non-empty signed subsets of E, called signed circuits, such that:

) If X, X,=6, X;,CX,, then X=X, or X;=-X,.
(2) If X=6, then X+¢ and —X=6
(3) (Signed elimination property)
If X, X,=0, z=(X;*"NX, ) U X NX;"), then there exists X;=6 such that X;*C
(X PUXH)\z and X7 C (X UXp )\z.

If M=(E,) is an oriented matroid, the above condition (3) is equivalent to the following
condition:

(8" If X, X,e0, ze (Xt NX) U X, NX:Y) and y= (XX, ) U (X \X,™) then there exists
X;=6 such that Xt (XFUXpH\z, X3 C X, UX,)\x and y=X;. (1)

For a collection 6 of signed sets, let 8= (X : X=6}. If M=(E,®) is an oriented matroid, then
M=(E,@) is a matroid. (3)

Conversly, let M be a matroid on E with the circuits £, and M be an oriented matroid on E
with the signed circuits 8. If 8=, 8=—60={—X : X=86)}, then 8 is called a circuit signature (or
orientation) of M. Let M*=(E, E*) be the dual matroid of M where E* is the set of cocircuits of
M. Accordingly, a cocircuit signature €* of M is a circuit signature of M¥*,
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We have the relation between @ and 6* such that;
(4) (Orthogonality property)
If X6 and Y=6 such that XN Y#¢, then (X*NYHUX NY)#¢ and (X*NY")
UE NY=#4p.

Let M=(E,8) be an oriented matroid. We define M to be acyclic if M contains no positive circuits
(signed circuits X with X =¢).

Let M=(E, &) be a matroid on E with the circuits ﬁ’ A point of M is a closed subset of E of
rank 1. A hyperplane of M is a maximal proper closed subset of E. We link hyperplanes and
cocircuits;

A set H is a hyperplane of the matroid M=(E,€) if and only if E\H is a cociveuit of M.(3)

Let M=(E,8) be an acyclic oriented matroid. We call Y+ an open half stace of ¥ where Y is
a signed cocircuit of M. A hyperplane H of M=(E, ) is called a facet of M if there is a positive
cocircuit ¥ (Y=1Y*) such that E\H=Y=Y* And any intersections of facets is called a face of
M. In particular, an cxtreme point of M is a face of rank 1.

Let M=(E, ) be an oriented matroid on E with the signed circuits 8, and let e=E. The set 6\e
obtained from @ by deleting e in 6 is defined by 6\e={X=0:eqEX}. The set 6/e obtained from
© by contracting ¢ in 0 is defined by 8/e=Min{X\e : X=6, X\e=¢}, where X\¢ denotes the signed
set Z such that Z+=XMe, Z7=X"\¢, and Min(8)=(Xc6 : X’=6 and X'CX imply X"=X}.

3. Main Theorem

Lemma 1. Let M=(E,®) be an oriented matroid on a finite set E with a circuit signature 6, and
let e=E. (E,0\¢) and (E,O/¢) are oriented matroids.
Proof is omitted [1].

Oriented matroids M\e and M/e denote oriented matroids (E,6\e) and (E,8/e) respectively.

Lemma 2. Let M be an acyclic oriented matroid on E. Every face F of M is a closed subset of E
such that M/F is acycile.

Proof. Since F is an intersection of facets of M. E\F is an union of positive cocircuits of M. Bj
Lemma 1, E\F is an union of positive cocircuits of M/F. Therefore M/F is acyclic. Obivously, 1
is a closed set.

Lemmse 3. Let M=(E,0) be an oriented matroid, X, X,, ..., X, be positive circuits, and X be .
signed circuit. Then for any eEX\UX there is a signed circuit Z of M such that esZ, Z+ CX+(
(UX) Z <X \(UX\

Proof. Suppose that Z is a signed circuit of M such that eeZCX|J (‘f__,]lX,-)‘ Zrc Xty (C_JIX;) an
ZcX U (.LjJ!X,-), and Z is chosen such that |Z™N (‘L:JlX,-)[ is minimal.

Let z=Z N X,*. By the definition of an oriented matroid, there is a signed circuit W of M suc
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that W+*CZ+UX"\z, W CZ \z. Hence e W. W*CX‘*U(_E_JIX,-), W—CX_U('I:J!X.‘) aad |W™N
{ E_JIX,»)|< el <£J1X"> |. This contradicts the minimality, of lZ'ﬂ (_lZJlXJ .

Lemma 4. et M=(E,8) bean acyclic orinted matroid, P be a point of i, If M/P iz ot acy ..
then there is a signed circuit X of M such that for an element e of E, X =2} and e=P.

Proof. Suppose that M/P is not acyclic. Then there is a positive circuit X’ of M/P. st X
% signed circuit of M such that X’=X\P. Hence X CP. On the other hand, we have |XNP| - .
“Uherefcre since M is acyclic, there is an element e of E such that X™={¢}, e=P.

Theorem 5. Let M=(E,®) be an acyclic oriented matroid on E with ihe signed circul= 9. A po o
P of M ii an extreme point if and only if there is o signed cocircuit of M iich that 7-=F.

Eroof. If P is an extreme point of M, then E\P is an union of positive cocircuits, Siese M
acyclic, ¥ has no loops. Hence there is a signed cocircuit Y’ such that PC Y7+, By Lew.uz 3,
Lrve a sigaed - reuit Z such that ZCP. Since M is acyclic, 2 =F. By definition ¥ - tFor-

a signed cocircuit ¥ of M such that Y+=P. .

Conversaly, +ippos: that there is a signed cocircuit ¥ of M such that 7*+=P. We scow that =
1s a face ot M. By Lemma 2, it suffices to prove that M/P is acyclic. Suppose that ..,/7 i: ..
acvclic. By Lemma 4, there is a signed circuit X of A7 such that for an e=E, X ={¢} zud :=>; -~
T ={e} and X" N Y*+={e}. Therefore (X*NYHU( X NY )=¢. This contradicts the orthogona:
property (4).
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