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1. Introduction

Let R be a commutative Banach algebra with unit ¢ such that [e[=1, M be the compact
topological space of its maximal ideals. For a given z in R, & : M—C; £(¢)=¢(z). We introduce
a topology in M with the aid of the function £. Then the resulting topology is Hausdorff space.
But since each nonzero multiplicative linear functional ¢ is continuous on R with |g)|=1, M is a
subset of the unit ball X in the conjugate space R*. If we consider the weak* topology over R*
and then consider the topology it induces on M, the topology defined on R is the trace on M
of the weak* topology defined in R*. Thus, each £ is continuous and, since MM is compact, % is
bounded on IR, that is, 2&C(MWM). And in fact, I has the weakest togology for which the mapping
& are continuous. The correspondence z—% is called the Gelfand representation of R. The Gelfand
representation is a continuous homomorphism of R onto a subalgebra R of CEO), since || £|.=r,(z)
<lzf.

This is an expository paper to establish the fundamenta! Gelfand representation theorem which
characterizes those commutative Banach algebra that are isomorphic to an algebra of continuous
functions on a compact Hausdorff space.

2. Preliminary Results

Let R be a Banach algebra. Let @ be the transformation of R into ¥(R) defined by 0(a)=T,
where T,(z)=ax and &(R) is the totality of bounded linear transform from R into R. Then ?
is an algebraic and topological isomorphism. If the complex Banach algebra R is a field, then R is
isomorphic to the field of complex numbers. Let R be a Banach algebra such that |fgl=|Fllgl
for each pair f,g=R. Then R is isomorphic to the field of complex numbers.

It is a well known fact that R/I is a field if and only if I is a maximal ideal. Thus if I'is a
closed ideal in R, if I'=={I-+f} is an element of R’==R/I define |lf’||=;1‘rellf lz+fIl, then {f/| is a

norm in R’, with respect to this norm R’ is complete and satisfying |f’g’| <!/ Illg’ll; thus R’ is
a Banach algebra.

Lemma 2.1. Let I be a maximal ideal in R. The quotient ring R'=R/I is isomorphic to the field
of complex numbers.

If f=R, there exists one and only one complex number i—we write A=jf(I)—such that {I+f}
= {I+2e}, equivalently expressed, f=A(mod I).

Lemma 2.2. Let F be a multiplicative linear functional of R onto the complex numbers and let I



be the kernel of F, that is, I={f . Ff=0}. Then I is a maximal ideal. Conversely, let I be a maxim¢
ideal and Let F be the mapping Ff=f' where f'={I+f} of R onto R/I. Then F is multiplicati
linear functional of R onto the complex numbers and the kernel of F is I.

The Lemma states that the notions of multiplicative linear functional and maximal ideal a:

equivalent. Cutting linquistic corners we shall frequently consider them identical.

Definition 2.3. A carrier space of R is the set of all nonzero multiplicative linear functionals o
R, endowed with the topology of pointwise convergence on R.

For z&R, the Gelfand transformation of z is the function i defined on M by i(¢) =¢(x) (¢¢
M). Let R be the set of all # for z&R. The Gelfand topology on M is the weak topology induce
by R, that is, the weakest topology that makes every % continuous. Then obviously RcCWy, tt
algebra of all complex continuous functions on .

Lemma 2.4. Let R be a commutative Banach algebra with a unit ¢. Then the carrier space M ¢
R is a compact Hausdorff space.

The correspondence £2; z—% is called the Gelfand representation of R. The mapping is line:
multiplicative function. Thus 2 is a homomorphism of R onto a subalgebra R of C(M). Denotir
the norm in C(M) by {+[... We have ll:il[,,:supli(q&)|=sup]¢(x) |. since ¢(z)e=a(x) for each g

|2).L7,(x) <)z}, zER. So the Gelfand representation is norm-decreasing and hence continuous.

Lemma 2.5. Let R be a commutative Banach algebra with a unit. If z&R is not invertible, th

the set R.= {wz . weR} is a proper ideal containing x.

Lemma 2.6. An ideal M in R is maximal if and only if it is the kernel of a nonzero multiplic

tive linear functional,

Theore;ll 9.7. For each z=R, o(x)={2(¢) : ¢=WM}. Hence r,(x) =S¢lé%|i(¢)l=lli||w-

Proof. If A=0(x), the le—z is contained in a proper ideal (Lemma 2.5), which in turn is :
some maximal ideal. It follows from Lemma 2.6 that le—z is in the kernel of some ¢=TN; that
0=¢(Re—2) =2—¢(x) =A—E($).

This shows that o(z)C (£(¢) : ¢=TM}. Containment in the other direction is clear from ¢(x)¢
o(x).

Definition 2.8. The radical of R is the intersection of all the maximal ideals of R. If the radic
of Ris {0}, then R is sa1d to be semisimple.

Theorem 2.9. The followmg statements are equivalent for an element f in a Banach algebra R.
(a) f belongs to the radical.

(b) the spectrum of f consists of the one point 1=0,

(¢) for every complex number 1, the sequence {(pf)"} converge to zero.

(d) &(¢)=0 for all p=M: that is i=0=M.

© bimlznrr=0,

Proof. It follows from Lemma 2.4, and Theorem 2.7,



3. Main Result
The main features of the Gelfand representation are summarized in the following theorem.

Theorem 2.10. (Gelfand representation theorem) Let R be a commutative Banach algebra with
unit e and M be its carrier space. The Gelfand representation £ . z—3% has the following properties.

(a) R is a homomorphism of R onto a subalgebra R of COV) and continuous.

(b) &(¢)=1 for all =M.

(c) R contains the constant functions and separates the point of M.

(d) & is invertible in C(M) if and only if z is invertible in R.

(e) ||i|l»=’l'i@"x”||”"-

() R is isomorphic to R if and only if R is semisimple.

Proof. (a) The mapping £ is obviously linear and multiplicative since if f,g=R and M=,
(f+8) (M)=f(M)+g(M) and (fg) (M)=f(M)g(M). Suppose now that f,—f, that is, |lf,— fl—0.
We have that f,—f since || fo—fll.=<|f»—fll. Hence the mapping is continuous.

(b) It is trivial.

(c) For 2=C, (i) (M)=2ie(M)=2 for all M=M. Thus R contains the constant functions. Also,
if fF(M,)=f(M,) for all f=R, and hence M;=M,. '

(d) A function £&C() is invertible in C(M) if and only if F(M) %0 for all MM by Theorem
2.7. This happens if and only if 0¢(f), that is, if and only if f is invertible in R.

(e) It follows from Theorem 2.7 and r,(z) =lim|z"|'/".

(f) Theorem 2.9. shows that the kernel of the Gelfand mapping is the radical of R.
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