A Note on the Gelfand Representation Theory

By Shin Po Kang Graduate School of Pusan National University, Pusan, Korea

1. Introduction

Let R be a commutative Banach algebra with unit e such that $\|e\|=1$, \mathfrak{M} be the compact topological space of its maximal ideals. For a given x in R, $\hat{x}: \mathfrak{M} \to C$; $\hat{x}(\phi) = \phi(x)$. We introduce a topology in \mathfrak{M} with the aid of the function \hat{x} . Then the resulting topology is Hausdorff space. But since each nonzero multiplicative linear functional ϕ is continuous on R with $\|\phi\|=1$, \mathfrak{M} is a subset of the unit ball Σ in the conjugate space R^* . If we consider the weak* topology over R^* and then consider the topology it induces on \mathfrak{M} , the topology defined on \mathfrak{M} is the trace on \mathfrak{M} of the weak* topology defined in R^* . Thus, each \hat{x} is continuous and, since \mathfrak{M} is compact, \hat{x} is bounded on \mathfrak{M} , that is, $\hat{x} \in C(\mathfrak{M})$. And in fact, \mathfrak{M} has the weakest togology for which the mapping \hat{x} are continuous. The correspondence $x \to \hat{x}$ is called the Gelfand representation of R. The Gelfand representation is a continuous homomorphism of R onto a subalgebra \hat{R} of $C(\mathfrak{M})$, since $\|\hat{x}\|_{\infty} = r_{\sigma}(x)$ $\leq \|x\|$.

This is an expository paper to establish the fundamental Gelfand representation theorem which characterizes those commutative Banach algebra that are isomorphic to an algebra of continuous functions on a compact Hausdorff space.

2. Preliminary Results

Let R be a Banach algebra. Let Φ be the transformation of R into $\mathcal{U}(R)$ defined by $\Phi(a) = T_a$ where $T_a(x) = ax$ and $\mathcal{U}(R)$ is the totality of bounded linear transform from R into R. Then Φ is an algebraic and topological isomorphism. If the complex Banach algebra R is a field, then R is isomorphic to the field of complex numbers. Let R be a Banach algebra such that ||fg|| = ||f|| ||g|| for each pair $f, g \in R$. Then R is isomorphic to the field of complex numbers.

It is a well known fact that R/I is a field if and only if I is a maximal ideal. Thus if I is a closed ideal in R, if $I' = \{I+f\}$ is an element of R' = R/I define $||f'|| = \inf_{x \in I} ||x+f||$, then ||f'|| is a norm in R', with respect to this norm R' is complete and satisfying $||f'g'|| \le ||f'|| ||g'||$; thus R' is a Banach algebra.

Lemma 2.1. Let I be a maximal ideal in R. The quotient ring R'=R/I is isomorphic to the field of complex numbers.

If $f \in R$, there exists one and only one complex number λ —we write $\lambda = f(I)$ —such that $\{I+f\}$ = $\{I+\lambda e\}$, equivalently expressed, $f \equiv \lambda \pmod{I}$.

Lemma 2.2. Let F be a multiplicative linear functional of R onto the complex numbers and let I

be the kernel of F, that is, $I = \{f : Ff = 0\}$. Then I is a maximal ideal. Conversely, let I be a maximal ideal and Let F be the mapping Ff = f' where $f' = \{I + f\}$ of R onto R/I. Then F is multiplicative linear functional of R onto the complex numbers and the kernel of F is I.

The Lemma states that the notions of multiplicative linear functional and maximal ideal ar equivalent. Cutting linquistic corners we shall frequently consider them identical.

Definition 2.3. A carrier space of R is the set of all nonzero multiplicative linear functionals o R, endowed with the topology of pointwise convergence on R.

For $x \in R$, the Gelfand transformation of x is the function \dot{x} defined on \mathfrak{M} by $\dot{x}(\phi) = \phi(x)$ ($\phi \in \mathfrak{M}$). Let \hat{R} be the set of all \dot{x} , for $x \in R$. The Gelfand topology on \mathfrak{M} is the weak topology induce by \hat{R} , that is, the weakest topology that makes every \dot{x} continuous. Then obviously $\hat{R} \subset C(\Delta)$, the algebra of all complex continuous functions on \mathfrak{M} .

Lemma 2.4. Let R be a commutative Banach algebra with a unit c. Then the carrier space \mathfrak{M} c R is a compact Hausdorff space.

The correspondence Ω ; $x\to\hat{x}$ is called the Gelfand representation of R. The mapping is linear multiplicative function. Thus Ω is a homomorphism of R onto a subalgebra \hat{R} of $C(\mathfrak{M})$. Denoting the norm in $C(\mathfrak{M})$ by $\|\cdot\|_{\infty}$. We have $\|\hat{x}\|_{\infty} = \sup_{\phi \in \mathfrak{R}} |\hat{x}(\phi)| = \sup_{\phi \in \mathfrak{R}} |\phi(x)|$. Since $\phi(x) \in \sigma(x)$ for each $q \in \mathbb{R}$ is $\|\hat{x}\|_{\infty} \leq r_{\sigma}(x) \leq \|x\|$, $x \in R$. So the Gelfand representation is norm-decreasing and hence continuous.

Lemma 2.5. Let R be a commutative Banach algebra with a unit. If $x \in R$ is not invertible, the set $R_x = \{wx : w \in R\}$ is a proper ideal containing x.

Lemma 2.6. An ideal M in R is maximal if and only if it is the kernel of a nonzero multiplicative linear functional.

Theorem 2.7. For each $x \in \mathbb{R}$, $\sigma(x) = \{\hat{x}(\phi) : \phi \in \mathbb{M}\}$. Hence $r_{\sigma}(x) = \sup_{\phi \in \mathbb{R}} |\hat{x}(\phi)| = ||\hat{x}||_{\infty}$.

Proof. If $\lambda \in \sigma(x)$, the $\lambda e - x$ is contained in a proper ideal (Lemma 2.5), which in turn is some maximal ideal. It follows from Lemma 2.6 that $\lambda e - x$ is in the kernel of some $\phi \in \mathfrak{M}$; that $0 = \phi(\lambda e - x) = \lambda - \phi(x) = \lambda - \hat{x}(\phi)$.

This shows that $\sigma(x) \subset \{\hat{x}(\phi) : \phi \in \mathfrak{M}\}$. Containment in the other direction is clear from $\phi(x) \in \sigma(x)$.

Definition 2.8. The radical of R is the intersection of all the maximal ideals of R. If the radic of R is $\{0\}$, then R is said to be semisimple.

Theorem 2.9. The following statements are equivalent for an element f in a Banach algebra R.

- (a) f belongs to the radical.
- (b) the spectrum of f consists of the one point $\lambda=0$.
- (c) for every complex number μ , the sequence $\{(\mu f)^n\}$ converge to zero.
- (d) $\hat{x}(\phi) = 0$ for all $\phi \in \mathfrak{M}$: that is $\hat{x} = 0 \in \mathfrak{M}$.
- (e) $\lim_{n\to\infty} ||x^n||^{1/n} = 0$.

Proof. It follows from Lemma 2.4. and Theorem 2.7.

3. Main Result

The main features of the Gelfand representation are summarized in the following theorem.

Theorem 2.10. (Gelfand representation theorem) Let R be a commutative Banach algebra with unit e and \mathfrak{M} be its carrier space. The Gelfand representation $\Omega: x \to \hat{x}$ has the following properties.

- (a) Ω is a homomorphism of R onto a subalgebra \hat{R} of $C(\mathfrak{M})$ and continuous.
- (b) $\hat{e}(\phi) = 1$ for all $\phi \in \mathfrak{M}$.
- (c) R contains the constant functions and separates the point of M.
- (d) \hat{x} is invertible in $C(\mathfrak{M})$ if and only if x is invertible in R.
- (e) $\|\hat{x}\|_{\infty} = \lim_{n \to \infty} \|x^n\|^{1/n}$.
- (f) \hat{R} is isomorphic to R if and only if R is semisimple.

Proof. (a) The mapping Ω is obviously linear and multiplicative since if $f, g \in \mathbb{R}$ and $M \in \mathbb{M}$, (f+g)(M) = f(M) + g(M) and (fg)(M) = f(M)g(M). Suppose now that $f_n \to f$, that is, $||f_n - f|| \to 0$. We have that $f_n \to f$ since $||f_n - f||_{\infty} \le ||f_n - f||_{\infty}$. Hence the mapping is continuous.

- (b) It is trivial.
- (c) For $\lambda \in C$, $(\lambda e)(M) = \lambda e(M) = \lambda$ for all $M \in \mathfrak{M}$. Thus \hat{R} contains the constant functions. Also, if $f(M_1) = f(M_2)$ for all $f \in R$, and hence $M_1 = M_2$.
- (d) A function $\hat{x} \in C(\mathfrak{M})$ is invertible in $C(\mathfrak{M})$ if and only if $f(M) \neq 0$ for all $M \in \mathfrak{M}$ by Theorem 2.7. This happens if and only if $0 \notin \sigma(f)$, that is, if and only if f is invertible in R.
 - (e) It follows from Theorem 2.7 and $r_{\sigma}(x) = \lim \|x^n\|^{1/n}$.
 - (f) Theorem 2.9. shows that the kernel of the Gelfand mapping is the radical of R.

References

- 1. Sterling K. Berberian, Lectures in Functional Analysis and Operator Theory, Springer-Verlag, New York, 1974.
- 2. R.G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
- 3. P.R. Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, Chelsea, New York, 1951.
- 4. P.R. Halmos, What does the spectral theorem say?, Amer. Math. Monthly, March, 1963.
- 5. Gilbert Helmberg, Introduction to Spectral Theory in Hilbert Space, John Wiley & Sons, New York, 1969.
- 6. E.R. Lorch, Spectral Theory, Oxford University Press, New York, 1962.
- 7. A.E. Taylor & D.C. Lay, Introduction to Functional Analysis, John Wiley & Sons, California, 1980.
- 8. W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
- 9. M. Schecter, Principles of Functional Analysis, Academic Press, New York, 1971.