A Note on Open Mapping Theorem

By In-Seon Hwang

A topological vector space X is an F-space if its topology is induced by a complete invariant metric. In this paper we study open mapping theorems on various F-spaces.

To prove the main theorems, the following lemmas are necessary.

Lemma 1. (Baire's category theorem) A complete metric space is not a union of a countable collection of nowhere dense sets.

Proof. see [1]

Lemma 2. (The open mapping theorem) Suppose

- a) X is an F-space,
- b) Y is a topological vector space,
- c) $T: X \rightarrow Y$ is continuous and linear, and
- d) T(X) is of the second category in Y.

Then

- i) T(X) = Y
- ii) T is an open mapping, and
- iii) Y is an F-space.

Proof. see [3]

Lemma 3. Let W be a topological vector space and $W_1 \subset W$ be a subspace of W. Let T be a continuous linear map from W onto an F-space X. If the restriction T_1 of T on W_1 is an open map, then T is also open.

Proof. Let U be open in W. It suffices to prove that T(U) is open in X. Let $x \in T(U)$. Since T_1 is onto, there exists $w \in W_1 \cap U$ such that $T_1 w = T_w = x$. Since T is open and $W_1 \cap U$ is open in W_1 , $T(W_1 \cap U)$ is open in X satisfying $x \in T_1(W_1 \cap U) \subset T(U)$. Therefore T(U) is open.

Theorem 4. Let V_n , $n=1,2,3,\cdots$ be F-spaces over Φ . Let W be topological vector space and for each n, let T_n is continuously linear map from V_n into W. If $W=\bigcup_{n=1}^{\infty}T_n(V_n)$ then every continuous linear map T from W onto any F-space X is open.

Proof. Let T be a continuous linear map from W onto X. Let V be any open set in W. We need to prove that T(V) is an open set in X. It is easy to see that $\bigcup_{n=1}^{\infty} T(T_n(V_n)) = X$. If $T(T_n(V_n))$ is of the first category in F for all $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} T(T_n(V_n))$ itself is again of the first category in X. But by lemma 1, F-space X is not of the first category. Thus for some n_0 , $T(T_{n_0}(V_{n_0}))$ is of the second category in X. Then by lemma 2, $T(T_{n_0}(V_{n_0})) = X$ i.e., $T \circ T_n$ is a continuous linear

map from V_{n_0} onto X.

Note that $T_{n_0}(V_{n_0})$ is a subspace of W. Now we claim that the restriction T' of T on $T_{n_0}(V_{n_0})$ is an open map.

Let U be an open subset of $T_{n_0}(V_{n_0})$. Then there exists an open set V in W such that $U=V\cap T_{n_0}(V_{n_0})$. Since T_{n_0} is continuous, $T_{n_0}^{-1}(U)$ is open in V_{n_0} . Since $T\circ T_{n_0}$ is open by lemma 2, $T\circ T_{n_0}(T_{n_0}^{-1}(U))=T(V\cap T_{n_0}(V_{n_0}))=T'(U)$ is open in X.

Therefore T' is an open map. By lemma 3, the proof is completed.

Theorem 5. Suppose that W is a topological vector space. Suppose there exists a sequence W_n of subspaces such that Wn are F-spaces and $\bigcup_{n=1}^{\infty} W_n = W$. Let T be continuous linear map from W onto any F-space X. Then T is an open map.

Proof. Let V be any open set in W. Let $T_n = T | W_n$, restriction of T on W_n . Then $\bigcup_{n=1}^{\infty} T_n (W_n) = X$. Since X is of the second category, at least one of $T_n(W_n)$ is of the second category in X, say $T_{n_0}(W_{n_0})$. Since W_{n_0} is F-space, by lemma 2, $T_{n_0}(W_{n_0}) = X$ and T_{n_0} is an open map. Therefore by lemma 3, We complete the proof.

References

- 1. H.L. Royden, Real Analysis. 2-nd edition, Mamillan, 1968.
- 2. Ronald Larsen, Functional Analysis. Dekker, 1973.
- 3. Walter Rudin, Functional Analysis. McGraw-Hill Inc., 1973.