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On a Generalized Volterra Equation by means of Spectral Measures

By Jee Gon Kim
Sang Myung Women’s University, Seoul, Korea

Abstract: In this paper we examine some properties of spectral measures and try to establish a fun-
damental theorem on :the existence of the solution of a generalized Volterra equation in a Hilbert

space as the results.

I. Introduction

The fundamental theorem on the solution of a generalized Volterra equation (briefly, G.V.E) in
a Hilbert space by means of orthoprojectors, was studied by Santis (see; (1)). In this note we are
to study a fundamental theorem on the existence of the solution of a G.V.E in terms of spectral
measures in a Hilbert space.

We will consider a Ke=L(H) (that is, algebra of bounded linear operators on H), each having
the property that its eigenspaces H,=N,(K) (that is, a eigen manifold of the operator K belonging
to the eigen values) are mutually orthogonal and orthogonally reduce X. Now let the E, be ortho-
projectors on some non-zero, mutually orthogonal subspace H, which form a complete system in H.

Let @, be a set of spectrum. Then for a point operator K, the values of Kxr(z=H) is defined by

K.z-——Zs}a,Esx, a.n
whenever the series (1.1) converges strongly in H. The domain 2, of the operator K consists of
these element z=H which

Ilellzr-;|<l'slzlll'3s$||2<°°° (1.2
If (E,), sJd (J is an indexed set), is a complete system of mutually orthogonal projection opera-

tors, then for each complex function f defined on J there corresponds, by analogy to the equation
(1.1), a point operator.

$N=TfOE= _f()dE, .3

with respect to the finite measure

EM)=¢(Xn), (1.4)
where Xy is the characteristic function of the M2 (M=L£Ms, M,=B). B(that is, a algebra of
subsets in H)

The measure E(M) defined in (1.4) will be called the measure of the spectral correspondence ¢
or, briefly spectral measure. For the case of an arbitary spectral correspondence ¢, we associate with
each vector z&H a finite numerical measure

u(M;z)=(E(M)z, z)={EM)z|? 1.5)
where E(M) is the measure of the spectral correspondence ¢. The measure ¢(M;z), generated by



the measure E(M) and the vector x, will be called the spectral measure of the vector z in the

correspondence ¢. The measure pu(M,z) iappears in the expressions,
Kz, 2)= | f(5)dp(M.:2) 1.6)

Therefore a spectral measure in H is generally a homomorphic map of algebra B of sets into a
complete algebra of proiection operators in H.

The general fundamental properties of spectral measures are omitted so that for a full discussions
and proofs, we should like to refer to the reference (2) and (3). In the process of developing our
discussion, we examine only some important thing necessary to developing this study further in our
particular direction.

II. Some Preliminary Lemmas

A subspace MC H orthogonally reduces KeL(H) if and only if the spectral measure E(M) of
the subspace M commutes with K. Indeed, let M orthogonally reduce K. Then, for any zeH=
MPM*, E(M)z=z=M, Kz=M and Kz'=M*. Therefore .

KEM)2=Kz=EM)Kz>KEM)=E(M)K @n
that is, the operator K and E(M) commute. Conversely, if the condition (2.1) is satisfied, then
EM)Ke=KE(M)2=KaEM)KEM)=KE(M) @.2)

Thus M is invariant under K, and whenever M is invariant, so is its orthogonal complement M,
since whenever E(M) commutes with K, the spectral measure (J—E(M)) of subspace M* also
commutes with K, hence from the condition (2.2), we have

(I-EM)KI-EM))=K(I-EM)). 2.3
We sometimes call KeL(H) a prespectral operator if and only if the condition (2.1) is satified
(see; (4)).
" If M,CM,, then E;(M)E;(M,)=E,(My)E,(M)=E;(M,); it easily follows that
(E, (M) —E (M) :=E,(M;) — E\ (M), 2.4

so that E,(M,) —E,(M;) is a spectral measure.
From the condition (2.2), (2.3) and (2.4), we obtain the following lemma;
Lemma 1 If KeeL(H) is a prespectral operator, then for every pair E,(M,), E,(M;) one has
(E.(Mp) ~E, (M) K= (E;(Mp) — (E,(M;)) K(E;(Mz) —E,(M))).
Suppose that KeL(H)) and |K[<1. Then (1-K)"'eL(H), also

<1—K>-1=§0K" (2.5)

the convergence of the series being in the operator norm (that is in L(H)) and [[(1-K)7}<(1—
KD .

Indeed, since |K*|=]K|" and |K|<C1, the series in (2.5) is absolutely convergent.

And a simple calculation shows that

(I-K) (x};:)K") =I= §§K”> (I-K).

‘The final estimate of this is deduced from the inequalities



IZKISEIRIS SIKI= A~ 1K

We say that KeL(H) is said to satisfy a Lipschitz condition on H with Lipschitz constant I if
there is a /<{oo such that
|Kz— Kyl <l|lz—yll (for Vf-g=H). (2.6)

Particularly, if K satisfies a Lipschitz condition with Lipschitz constant [<{1, then we call Ke
L(H) a contraction.
Therefore, as consequences of the equations (2.5), (2.6) and (3.3), we have the following lemma;

Lemma 2 If KeL(M) is contraction, then the inverse (I—K)~! exists and since it is bounded,
for EMYeB one has EIM)(I-K)'=EM)(I-K)E(M).

III. The Main Theorems

A G.V.E is given by the form;
y=z—kz, (for x,y=H) @G.D

If the inverse bounded operator (1—K)~! exists, then the equation (3.1) has a unique solution
z=H.

Now, our starting point is to examine a propety for the resolvent R(1;K) in terms of spectral
measure E(M). From the equation (1.3), I and K may be given by the ¢(I) and ¢(f), respec-
tively. Hence, ¢(1) ~¢(f)=¢(1—Sf).

If a point 1&Z (complex numbers) is a regular point of the operator ¢(f), then

i(rb})f [1-f®1>0 3.2)

This implies that for sufficiently small £>0,
E(N,®)=0 3.3
Where N,®={s;]1 - f(s) | <e}. Therefore the operator [¢(1—f)I ™ exists if and only if the mea-
sure E(N,®) of the set N = {s; f(s) —1=0} is zero, and the resolvent of ¢(f) has the integral
representation,

REK)=($(1—-£))"= | = dE) 3.9)
on its resolvent set. A point 1&Z belongs to the spectrum of ¢(f) if and only if,
%g}fll—f(s)|=0, w.r.t E(M) 3.5)

An equivalent assertion is, for all ¢>0,

E(N,*)>0. . (3.6)

Therefore, the spectrum of the operator ¢(f) coincides with the closure of set {f(s)} with
respect to E(M).

In fact, if s is an eigenvalue of ¢(f), then ¢( f)—sI is not invertible; i.e. E(N,%)>0. Suppose
that this condition is satisfied, and let X, be the characterisitic function of the set N,. Furthermore,
let = be a non-zero vector in the subspace H(XN,) whose spectral measure is E(N,). Since f(s)%s
(N)=sX;=sX,(N,) and ¢{sX,) =sE(N;),

$(flz=¢(fI¢R)a=¢(fA)x=SE(N,)zx=sz 3.7



Thus, = is an eigenvector of ¢(f), and
H(N,)CH,. 3.8
Conversely, if z=H; and £+0, then, according to the equation (1.5),

[ ls=F@ 1P, : ) =18( f)a—szlP=0

and since |f(s) —s|>0 on J--N;, this last equation can hold only if
IET—N,)zll?=p(Z— Ny z) =0

i.e. E(J—N;)x=0. Therefore

z=E(N)z+E(J—N,)z=E(N,)x 3.9
i.e. z=H(N,). Thus H,cCH(N,) and this result, when combined with the equation (3.8) shows
that H,=H(N).
We conclude from the above results that a point s&Z bolongs to the eigenvalue spectrum of ¢(f)
if and only if the measure E(N,) of set N,= {f(s)=s} is positive. In the case, E(N,) is a spectral
measure on the subspace H, corresponding to the eigenvalue 5. As consequences of the equations
(1.3), (3.6) and lemma 1, we have the following theorem;

Theorem 1 Let K&L(H) be a prespeciral operator. Then necessary and sufficient conditions for
K to be K= Lf(s)dE(M,) are that, fér all EM)eB, EIM)K=E(M)KE(M) and E(N,®)>0,

From the lemma 2, we obtain a fundamental theorem on the existence of the solution of a G.V.E
as follows;

Theorem 2 In order that exist the solution of a G.V.E, it is necessary and sufficient conditions
that, for all E(M), satisfy, the inverse bounded operater (I—K)™' exists Othe measure of Co-spec-
trum, E(N,©)=0, and since (1—K)™' is a bounded, prespectral operator, one also has E(M)(1—
K)'=EM)(1-K)'E(M).
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