A Note on the Properties of a Solvable Group

By Kim, Kyeong Bae
Sungshin Women's University, Seoul, Korea

I. Introduction

The group is the very important concept in an abstract algebra. The concept of the group is the foundation of the ring, the vector space, and the field. Therefore, I think that it is important for me to scrutinize properties of groups.

In this note, we think about that when G_1, G_2, \dots, G_n , are solvable groups, the direct product of a finite number of groups is also solvable. So we will introduce some definitions and lemmata in order to prove the main theorem.

II. Definitions and Propositions

Definition 1. A group G is said to be *abelian* if its binary operation is commutative. ab=ba for all $a,b \in G$.

Proposition 2. If N is a subgroup of G, then NN=N.

Proof $x \in N \Rightarrow xx \in N$. But $xx \in NN$. Therefore, $N \subset NN$. (1)

 $y \in NN \Rightarrow y = xx$ for all $x \in N$. But $xx \in N$ for all $x \in N$, $y \in N$. Therefore $NN \subset N$. (2) By (1) and (2), NN = N.

Definition 3. A subgroup H of a group G is *normal* if it is the kernel of some homomorphism of G into some group.

Proposition 4. A subgroup H of a group G is normal if and only if $gHg^{-1}=H$ for all $g\in G$.

Proof Since H is the kernel of some homomorphism f, f(x)=e' for all $x \in H$ where $f: G \rightarrow G'$. e'; a unit element in G'. Therefore, $f(gxg^{-1})=f(g)f(x)f(g)^{-1}=f(g)e'f(g)^{-1}=e'$.

 $\therefore gxg^{-1} \in H$: i.e. $gHg^{-1} = H$.

Conversely, for all $g \in G$, $x \in H$, $gHg^{-1} = H$ if and only if f(x) = e'. Therefore, if $gHg^{-1} = H$ for all $g \in G$, then H is normal.

Definition 5. If N is a normal subgroup of G, then $G/N = \{Na \mid a \in G\}$ is a factor group or a quotient group.

Definition 6. Let H be a subgroup of G. $aH = \{ax | x \in H\}$ is a left coset of H in G.

Definition 7. A group G is *solvable* if there exists a sequence of subgroups $G=H_0\supset H_1\supset H_2\cdots$ $\supset H_m=\{e\}$ such that H_i is normal in H_{i-1} and such that the factor group H_{i-1}/H_i is abelian, for $i=1,2,\cdots,m$.

Definition 8. Let A and B be groups. $G=A\times B=\{(a,b) | a\in A, b\in B\}$ is said to the *direct product* of A and B. For (a_1,b_1) , (a_2,b_2) in G, their product $(a_1,b_1)(a_2,b_2)=(a_1a_2,b_1b_2)$.

III. Main Theorem

In order to prove the main theorem, some lemmata are needed.

Lemma 1. Let G_1 and G_2 be groups and H_1 and H_2 subgroups of G_1 , G_2 respectively. Then $H_1 \times H_2$ is also a subgroup of $G_1 \times G_2$.

Proof (a_1, b_1) , (a_2, b_2) , $(a_3, b_3) \in H_1 \times H_2$ where $a_1, a_2, a_3 \in H_1$ and $b_1, b_2, b_3 \in H_2$.

- 1. $(a_1, b_1) \{(a_2, b_2) (a_3, b_3)\} = (a_1, b_1) (a_2 a_3, b_2 b_3) = (a_1(a_2 a_3), b_1(b_2 b_3)) = ((a_1, a_2) a_3, (b_1, b_2) b_3) = \{(a_1, b_1) (a_2, b_2)\} (a_3 b_3).$
 - 2. $(a_1, b_1)(a_2, b_2) = (a_1a_2, b_1b_2) \in H_1 \times H_2$.
 - 3. $(a_1, b_1)(e_1, e_2) = (a_1e_1, b_1e_2) = (a_1, b_1)$ where e_1, e_2 are unit elements in H_1 and H_2 respectively.
 - 4. $(a_1, b_1)(a_1^{-1}, b_1^{-1}) = (a_1a_1^{-1}, b_1b_1^{-1}) = (e_1, e_2)$

Lemma 2. Let G_1 and G_2 be a group and let N_1 and N_2 be normal subgroups of G_1 and G_2 respectively. Then $N_1 \times N_2$ is a normal subgroups of $G_1 \times G_2$.

Proof Let $x_1 \in N_1$, $y_1 \in G_1$ and $x_2 \in N_2$, $y_2 \in G_2$. Then $y_1 x_1 y_1^{-1} \in N_1$, and $y_2 x_2 y_2^{-1} \in N_2$

$$(y_1, y_2)(x_1, x_2)(y_1, y_2)^{-1} = (y_1x_1, y_2x_2)(y_1^{-1}, y_2^{-1}) = (y_1x_1y_1^{-1}, y_2x_2y_2^{-1}) \in N_1 \times N_2.$$

For
$$(y_1, y_2) \in G_1 \times G_2$$
, $(y_1, y_2) N_1 \times N_2$ $(y_1, y_2)^{-1} = N_1 \times N_2$.

Therefore, $N_1 \times N_2$ is normal in $G_1 \times G_2$.

This result can be extended to the direct product of a finite number of groups.

The main theorem: If G_1, G_1, \dots, G_n are solvable groups, then the direct product $G_1 \times G_2 \times \dots \times G_n$ is solvable.

Proof Let G_1 and G_2 be solvable groups.

There exist two sequences $G_1=H_{11}\supset H_{12}\supset \cdots \supset H_{1m}=\{e_1\}$ and $G_2=H_{21}\supset H_{22}\supset \cdots \supset H_{2m}=\{e_2\}$ such that H_{1i} is normal in H_{1i-1} and the factor group H_{1i-1}/H_{1i} is abelian and H_{2i} is normal in H_{2i-1} and H_{2i-1}/H_{2i} is abelian.

Therefore, there exists a sequence $G_1 \times G_2 = H_{11} \times H_{21} \supset H_{12} \times H_{22} \supset \cdots \supset H_{1m} \times H_{2m} = \{(e_1, e_2)\}$, where $H_{1i} \times H_{2i}$ is normal in $H_{1i-1} \times H_{2i-1}$.

And we must show that the factor group $H_{1i-1} \times H_{2i-1}/H_{1i} \times H_{2i}$ is abelian. Since H_{1i-1}/H_{1i} is abelian, $xyH_{1i} = yxH_{1i}$ for $x, y \in H_{1i-1}$.

Let $(x, z) (y, w) \in H_{1i-1} \times H_{2i-1}$ $(x, z) (H_{1i} \times H_{2i}) (y, w) (H_{1i} \times H_{2i})$ $= (x, z) (y, w) (H_{1i} \times H_{2i})$ (by proposition 2) $= (xy, zw) (H_{1i} \times H_{2i})$ (by proposition 8) $= xyH_{1i} \times zwH_{2i}$ $= yxH_{1i} \times wzH_{2i}$ (H_{1i} and H_{2i} are normal) $= (yx, wz) (H_{1i} \times H_{2i}) = (y, w) (x, z) (H_{1i} \times H_{2i}) (H_{1i} \times H_{2i})$ $= (y, w) (H_{1i} \times H_{2i}) (x, z) (H_{1i} \times H_{2i})$ $= (y, w) (H_{1i} \times H_{2i-1}) / H_{1i} \times H_{2i}$ is abelian.

Therefore $G_1 \times G_2$ is solvable. The proof that $G_1 \times G_2 \times \cdots \times G_n$ is solvable is trivial by induction.

References

1. I.N. Herstein, Topics in Algebra, Xerox College Publishing Lexington Massachuse s, 1975.

- 2. T.W. Hungerford, Algebra, Springer Verlag, 1974.
- 3. S. Lang, Algebra, Addison-Wesley Publishing Company, 1965.
- 4. M. Suzuki, Group Theory I, Springer Verlarg, 1982.