Nonhomogeneous Equations without Nontrivial C^1 Solutions

By Yong Jing Suk
Kang Won National University, Chuncheon, Korea

In this paper, we give the two examples with which the Mizohata operator has no C^1 solution in any neighborhood of the origin and characterize the C^1 solutions of the perturbed Mizohata operators.

1. Preliminary

Theorem 1.1. Let W be a connected open subset of R^2 invariant under the symmetry $(x, t) \mapsto (x, -t)$. Of u is a C^1 solution satisfies Mu=0 in W, we have u(x, t)=u(x, -t) in W.

Proof. See F. Treves [1].

2. Main Theorems

Let D_n (n = 1, 2, ...) be an arbitrary sequence of closed nonoverlapping discs in the right half of the (x, t) plane, t > 0, with centres $(0, t_n)$, $t_n > 0$ and $t_n \to 0$.

Let f(x,t) be an arbitrary chosen C^{∞} function with compact support which is such that

$$\iint_{R} f \ dx \ dt \neq 0 \text{ for } n=1,2,...$$

Theorem 2.1. If f satisfies the conditions above, there is no C^1 solution of Mu=f in any neighborhood of the origin. Here $M=\frac{\partial}{\partial t}+it\frac{\partial}{\partial x}$.

Proof. See L. Nirenberg [4].

Corollary 2.2. Let f be a function in Theorem 2.1. If u is a C^1 solution satisfying Mu=fu in an arbitrary neighborhood of the origin, then u(0,0)=0.

Proof. Suppose $u(0,0) \neq 0$. $u \neq 0$ in some open subset D of the origin. Let $w = \log u$, $Mw = \frac{1}{u} Mu$ $= \frac{1}{u} f u = f$ in D. W is a C^1 solution satisfying Mu = f. It contradicts to the choice of f in D Theorem 2.1. (Q.E.D)

Let $K_{m,n,p}(m,n,p)$ are positive numbes) be a triple sequence of compact sets in the upper half plane t>0, such that the following is true;

- (2.1) the projections on the x-axis t=0 of the $K_{m,n,p}$ are pairwise disjoint;
- (2.2) for m, n fixed, $\lim_{n\to\infty} K_{m,n,n} = (x_{m,n}, t_{m,n})$ with $t_{m,n} > 0$;
- (2.3) for m fixed, $\lim_{n\to\infty} (x_{m,n}, t_{m,n})$ with $t_m>0$;
- (2.4) $(x_m, t_m) \rightarrow (0, 0)$ as $m \rightarrow \infty$

We take then $g \in C^{\infty}(\mathbb{R}^2)$ with the following properties;

- (1) $g \ge 0$ everywhere
- (2) $g \equiv 0$ outside $\bigcup_{m,n,p} K_{m,n,p}$
- (3) g>0 at some point of each $K_{m,n,p}$.

Theorem 2.3. If g satisfies the conditions above, there is no C^1 solution satisfying Mu=g in an neighborhood of the origin.

If u is a C^1 solution satisfying Mu=gu in any neighborhood W of the origin, $u\equiv 0$ in W.

Proof. There are numbers m_0, n_0, p_0 large enough such that, for $m > m_0, n > n_0, p > p_0$, the following is true; Let $R_{m,n,p}$ be the rectangle $a_{m,n,p} < x < b_{m,n,p}$, |t| < T. The numbers $a_{m,n,p}$, $b_{m,n,p}$ at T > 0 can be chosen so that $K_{m,n,p} \subset R_{m,n,p} \subset W$, $R_{m,n,p} \cap K_{m',n',p'} = \emptyset$ if $(m,n,p) \neq (m',n',p')$. Note that $K_{m,n,p} \cap K_{m',n',p'} = \emptyset$ if $(m,n,p) \neq (m',n',p')$.

Let then $K_{m,n,p}$ denote the image of $K_{m,n,p}$ under the map $(x,t)\mapsto (x,-t)$. Then $W_{m,n,p}=R_{m,t}-(K_{m,n,p}\cup K_{m,n,p})$ and let $W^0_{m,n,p}$ be the outer connected component of $W_{m,n,p}$. Note that $W^0_{m,n}$ is open, connected and symmetric in t.

Suppose then that Mu=g in W. Since $g\equiv 0$ in $R_{m,n,p}-K_{m,n,p}$, we have Mu=0 in $W^0_{m,n,p}$. Let r be a smooth closed curve in $W^0_{m,n,p}\cap \{(x,t)\,|\,t>0\}$ whose interior contains $K_{m,n,p}$. We claim that

(2.5) $\int_{r} u(x,t) (dx-it \ dt) = 0. \text{ Since } u(x,t) = u(x,-t) \text{ in } W^{0}_{m,n,p} \text{ by Theorem 1.1.}$ $\int_{r} u(x,t) (dx-it \ dt) = \int_{r} u(x,t) (dx-it \ dt) = \int_{r} \tilde{u}(x) dx, \text{ where } \tilde{r} \text{ is the image of } r \text{ under the m}$

 $(x,t)\mapsto(x,-t), \ \tilde{r}=z(r)=z(\tilde{r}) \ \text{and} \ \tilde{u}(z)=u \ (\text{Re } z, \ \sqrt{-2} \ \text{Im } z) \ \text{via the map} \ (x,t)\mapsto z=x-i\frac{t^2}{2}.$

 $Mu=Mz\frac{\partial \tilde{u}}{\partial z}+m\bar{z}\frac{\partial \tilde{u}}{\partial \bar{z}}=2it\frac{\partial \tilde{u}}{\partial \bar{z}}$. Since Mz=0 and Mu=0 in $W_{m,n,p}-K_{m,n,p},\frac{\partial \tilde{u}}{\partial \bar{z}}=0$ in a simp connected domain, the image W' of $W_{m,n,p}-K_{m,n,p}$ via the map z and r is a smooth closed cur in W'. By Cauchy theorem, $\int_{z}\tilde{u}(z)dz=0$. Thus our claim is proved.

By Stoke's Theorem,

$$\int_{r} u(x,t) (dx-itdt) = \iint_{\operatorname{Int}} d[u(dx-itdt)] = -\iint_{\operatorname{Int}} \left(\frac{\partial u}{\partial t} + it \frac{\partial u}{\partial x}\right) dx dt = -\iint_{\operatorname{Int}} Mu \ dx \ dt = -\iint_{\operatorname{Int}} g \ dx$$

$$= -\iint_{R} dx \ dt \neq 0.$$

Since $g\equiv 0$ outside $K_{m,n,p}$ and g>0 at some point of each $K_{m,n,p}$. It is a contradiction to (2.5 Thus we get the first part of the Theorem.

Now we shall give the second part of the Theorem.

$$\iint_{\operatorname{Int}} Mu \ dx \ dt = \iint_{\operatorname{Int}} g \ dx \ dt = \iint_{K_{n,n,p}} gu \ dx \ dt.$$

In conclusion,

$$\iint_{K_{m,n,k}} gu \ dx \ dt = 0.$$

Now suppose we had

(2.7)
$$u(x_{m,n}, t_{m,n}) \neq 0.$$
 -7.8

Then, for p large enough, in $K_{m,n,p}$ Arg u would be very colse to Arg u $(x_{m,n}, t_{m,n})$ by the continuity of u. Since g>0 in some subset of $K_{m,n,p}$, (2.6) would be impossible. Therefore (2.7) is not true.

Therefore u has a infinite sequence of zeros, converging to (x_m, t_m) . But in the neighborhood of (x_m, t_m) (Since $t_m > 0$), $L = \frac{\partial}{\partial t} + it \frac{\partial}{\partial x} - g(x, t)$ is elliptic. We can choose a suitable local coordinates ξ, η such that $L = w(\xi, \eta) \left(\frac{\partial}{\partial \xi} + i \frac{\partial}{\partial \eta} \right)$ with $w \neq 0$, according to the Newlander-Nirenberg Theorem. Therefore u is a holomorphic function of $\zeta = \xi + i\eta$, $u \equiv 0$ in a full neighborhood of (x_m, t_m) , and therefore in the entire set $W^+ = \{(x, t) \in W | t > 0\}$.

But then $u\equiv 0$ in the open set $W^0_{m,n,p}\cap\{(x,t)|t<0\}$, hence in W^- by Theorem 1.1, hence in W by the continuity of u. (Q.E.D)

References

- 1. F. Treves, Lectures on P.D.E, Korean-US Math. Workshop '79, S.N.U. (1979)
- 2. Jongsik Kim, Unsolvability of the Mizohata Operator, Bull. KMS. Vol. 18, No. 1 (1981)
- 3. L. Hörmander, Linear P.D.O., 3rd. rev. ed., Springer Verlag, New York, 1969.
- 4. L. Nirenberg, Lectures on linear P.D.E. Reg. Conf. Series in Math. No. 17, Amer. Math. Soc., 1973.