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On Linear Functionals on Saks Spaces

By Yong Soon Shin
Aju University, Suwon, Korea

The purpose of this note is to show some basic properties of y-linear functionals on Saks spaces.
We begin with some definitions given in [2], [3], and [4].

A Frecht norm | | on a linear set X is a real-valued non-negative function with the following
properties:

(1) |z|=0 if and only if z=0,

@) lz+y|Llz|+]y] for all z,y in X,

(3) if {a,} is a sequence of real numbers converging to a real number g and {z,} is a sequence
of points of X with |z,—x|—0, then |a,z,—ax|—0.

It is called a B-norm if the condition (3) is replaced by

(4) laz|=|a||z| where a is any real number and zx is any element of X.

Let | |, and | |; be two norms (B or F) defined on X. We define | |,=]| |,if |z.|,—0 implies
{z,],—0. When | [,2]| |yand | |;=]| |; wesaythat | |, is equivalent to | |, and write | |;~]| [,

A two norm space is a linear set X with two norms, a B-norm | |, and an F-norm | |,. A
sequence {z.} of points in a two norm space (X, | |, | |2) is said to be y-comvergent to z in X,

T .
written z,—z, if lim sup z,<{oo and lim,|z,—z|,=0.
A sequence {z,} in a two norm space is said to be y-Cauchy if (z,,—z,)—0 as p,, g, . A
two norm space X,=(X,| |1, | |2) is called y-complete if for every y-Cauchy sequence {z,} in X,

r
there exists an z in X, such that z,—z.
A y-linear functional f on two norm space is a real-valued function on X, such that
(1) flaz+by)=af(z)+bf(y), for every real numbers 4,5 and any =,y in X,

T
@) if z,—z, then f(z,)—f(zx).
The set of all y-linear functionals on X, will be denoted by X,* It is easy to see that X,* is a

linear set.

Let X be a linear set and suppose that | |, is a B-norm, and | |* is an F-norm on X. Let X,=
{reX : |z|;<1} and define d(z,3)=|z~y|* in X,. Then d is a metric on X, and the metric
space (X, d) will be called a Saks set. If (X,,d) is complete, it will be called a Saks space. We
will denote (X,,d) by (X,| |, ] |I®.

Banach ([1], p.243) has defined the following
Definition 1. Let {X.} be a class of Banach spaces. Define



(X, X, ...)={{zs} : zs&X, for each & and g}llxklx,<°°}.
If we define vector addition in the usual way the above set is linear. We often denote I1(X;, X,, ...)
by I({X.}). Define |x],“x,,,=i|x,~|x,. for z={z;}. Then it is easy to see that the space ([{Xi},
i=1

| licway) is a Banach space. We prove the following
Theorem 1. The dual of the space (I({Xi}), | |(xm) is the space (m({X*}), | |lmx:i*n) where
m({X*)) = {{zs} : z.&Xi* for each k and supy|z:|x,* <o}, and |x|n(w ¥y =supe| x| x,¥, o= {z4}.

Proof. We can show that every linear functional on I({X.}) is associated with a unique sequence
g={gi}}, g:=X* for each i. For z={z,) =l({X.}), we have 1"131: lz—l__znjl, Zi| 1) =0 where z; repre-
se;1ts the sequence (0,0, ..., x,0, ...) and the space X; is identified with the space (0, 0, ..., X;, 0, ...).
If feU({X})J*, then f(z) =;:1 Sf(x) =gf|."i(xi):g;lgi($i), where gi=X* and gi=flx. It is

easy to see that (U{X},)J* is isometrically isomorphic to (m({X:}), | lma*n).

We define || {z;) Hs=i’§7|$ilx.-*/(l+ |z;|x,*) and denote the Saks set (m({X:*}), | lmcct® I 1)

i=1

by (m,({X:*}), d).

Theorem 2, Thke Saks set (m,({Xi*}),d) is a complete metric space, that is, (m;({X,*}), d) is @
Saks space.

Proof. Let {z,}, z,= {#a,2} be a Cauchy sequence of points from m,({X,*}). Then

| Zn,i— Zm,i| x.*—0 as n,m—oo, for each i.
Since each X; is complete, there is z;=X* with |z;|x*¥<1 such that
|2, 2:] x*—0 as n—soo,

Hence z= {z;} m,({X,*}). Since coordinatewise convergence is equivalent to || ||, convergence,
we have |z,—2|,—0 as n—co, Hence (m,({X,*}), d) is complete.

Theorem 3. The space I({X\**}) can be identified with a subset of [ms({X:*}))*, the space of
y-linear functionals on m,({Xy*}).

Proof. We show that if f=(m,({X,*})]* then f can be uniquely associated with a sequence {fi},
fieX**, If z; represents the sequence (0,0, ..., z;,0,...) and the space X;* is identified with the
space (0,0, ..., X;*,0,...), we have

1ipr|x—_i=:1ac;ll,=o for z= {z;} m.((X:*]).
Hence, for felm,({X:*})]*, we have
F@=5f @)=L flx* @)=L,

where fi=f]y*=X** and f; represents the sequence (0,0, ..., f:,0,..-).
Now we show that fe(m,({X;*})]* for f={f}e=({Xi**}). Let {z.={z.i}} be a sequence of
points from m,({X,*}) and [z.[—0.

Since fEl({X:**}), there is N, such that :g, | fal x¥* <e/2 for nz Ny,



Ny
and there is 6=48(¢) such that for all = withlsg_p | &a,i]x,*¥ <8, we have I;f,-(x,,,.-) | <e/2.

=N

Since |lz.l;—0, there exists N, such that
sup ixn,i[‘\'.’*<5 for n>N2,
1SIEN;

Hence,

‘%lfi(z,,,;) | <e/2 for n>N,,

|
Thus we have, for 2>>N,,
| £

o0

ﬁmpquﬁmp

i=N+1

= [I ifi(‘zn,i) ! Sl{J\Z‘

i=] i=}

Le/2+ ™ Lfel e, |zg,i| ¥
i=N;+1
<e/2+e/2=¢,
To obtain the last inequality we have used the fact that if z,=(m.({X*})]* then |z, :|x*<£1
for each 7. Thus fe(m,({X;*})I*.
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