On Linear Functionals on Saks Spaces

By Yong Soon Shin
Aju University, Suwon, Korea

The purpose of this note is to show some basic properties of γ -linear functionals on Saks spaces. We begin with some definitions given in [2], [3], and [4].

A Frecht norm | | on a linear set X is a real-valued non-negative function with the following properties:

- (1) |x|=0 if and only if x=0,
- (2) $|x+y| \le |x| + |y|$ for all x, y in X,
- (3) if $\{a_n\}$ is a sequence of real numbers converging to a real number a and $\{x_n\}$ is a sequence of points of X with $|x_n-x|\to 0$, then $|a_nx_n-ax|\to 0$.

It is called a B-norm if the condition (3) is replaced by

(4) |ax| = |a||x| where a is any real number and x is any element of X.

Let $| \cdot |_1$ and $| \cdot |_2$ be two norms (B or F) defined on X. We define $| \cdot |_1 \ge | \cdot |_2$ if $|x_n|_1 \to 0$ implies $|x_n|_2 \to 0$. When $| \cdot |_2 \ge | \cdot |_1$ and $| \cdot |_1 \ge | \cdot |_2$, we say that $| \cdot |_1$ is equivalent to $| \cdot |_2$ and write $| \cdot |_1 \sim | \cdot |_2$.

A two norm space is a linear set X with two norms, a B-norm $| \cdot |_1$ and an F-norm $| \cdot |_2$. A sequence $\{x_n\}$ of points in a two norm space $(X, | \cdot |_1, | \cdot |_2)$ is said to be γ -convergent to x in X, written $x_n \to x$, if $\lim \sup x_n < \infty$ and $\lim_n |x_n - x|_2 = 0$.

A sequence $\{x_n\}$ in a two norm space is said to be γ -Cauchy if $(x_{p_n} - x_{q_n}) \to 0$ as $p_n, q_n \to \infty$. A two norm space $X_s = (X, |\cdot|_1, |\cdot|_2)$ is called γ -complete if for every γ -Cauchy sequence $\{x_n\}$ in X_s there exists an x in X_s such that $x_n \to x$.

A γ -linear functional f on two norm space is a real-valued function on X_s such that

- (1) f(ax+by)=af(x)+bf(y), for every real numbers a,b and any x,y in X_s ,
- (2) if $x_n \xrightarrow{f} x$, then $f(x_n) \rightarrow f(x)$.

The set of all γ -linear functionals on X_s will be denoted by X_s^* . It is easy to see that X_s^* is a linear set.

Let X be a linear set and suppose that $| \cdot |_1$ is a B-norm, and $| \cdot |_*$ is an F-norm on X. Let $X_s = \{x \in X : |x|_1 < 1\}$ and define $d(x, y) = |x - y|_*$ in X_s . Then d is a metric on X_s and the metric space (X_s, d) will be called a Saks set. If (X_s, d) is complete, it will be called a Saks space. We will denote (X_s, d) by $(X_s, | \cdot |_1, \cdot |_*)$.

Banach ([1], p. 243) has defined the following

Definition 1. Let $\{X_k\}$ be a class of Banach spaces. Define

$$l(X_1, X_2, ...) = \{\{x_k\} : x_k \in X_k \text{ for each } k \text{ and } \sum_{k=1}^{\infty} |x_k|_{X_k} < \infty\}.$$

If we define vector addition in the usual way the above set is linear. We often denote $l(X_1, X_2, ...)$ by $l(\{X_k\})$. Define $|x|_{I(\{X_k\})} = \sum_{i=1}^{\infty} |x_i|_{X_i}$ for $x = \{x_i\}$. Then it is easy to see that the space $(l\{X_k\}, |x_k|)$ is a Banach space. We prove the following

Theorem 1. The dual of the space $(l(\{X_i\}), | |_{((X_i))})$ is the space $(m(\{X_i^*\}), | |_{m((X_i^*))})$ where $m(\{X_i^*\}) = \{\{x_k\} : x_k \in X_k^* \text{ for each } k \text{ and } \sup_{k} |x_k|_{X_k^*} < \infty\}$, and $|x|_{m((X_k^*))} = \sup_{k} |x_k|_{X_k^*}, x = \{x_k\}$.

Proof. We can show that every linear functional on $l(\{X_i\})$ is associated with a unique sequence $g = \{g_i\}$, $g_i \in X_i^*$ for each i. For $x = \{x_i\} \in l(\{X_i\})$, we have $\lim_{n \to \infty} |x - \sum_{i=1}^n x_i|_{l(\{X_i\})} = 0$ where x_i represents the sequence $(0, 0, ..., x_i, 0, ...)$ and the space X_i is identified with the space $(0, 0, ..., X_i, 0, ...)$. If $f \in [l(\{X_i\})]^*$, then $f(x) = \sum_{i=1}^\infty f(x_i) = \sum_{i=1}^\infty f|_{X_i}(x_i) = \sum_{i=1}^\infty g_i(x_i)$, where $g_i \in X_i^*$ and $g_i = f|_{X_i}$. It is easy to see that $[U\{X\}_i)]^*$ is isometrically isomorphic to $(m(\{X_i\}), ||_{m(\{X_i^*\})})$.

We define $\|\{x_k\}\|_s = \sum_{i=1}^{\infty} \frac{1}{2^i} |x_i|_{X_i}^* / (1 + |x_i|_{X_i}^*)$ and denote the Saks set $(m(\{X_k^*\}), \|\|_{m(\{X_k^*\})}, \|\|\|_s)$ by $(m_s(\{X_k^*\}), d)$.

Theorem 2. The Saks set $(m_s(\{X_k^*\}), d)$ is a complete metric space, that is, $(m_s(\{X_k^*\}), d)$ is a Saks space.

Proof. Let $\{x_n\}$, $x_n = \{x_{n,k}\}$ be a Cauchy sequence of points from $m_s(\{X_k^*\})$. Then $|x_{n,i} - x_{m,i}|_{X_i} \to 0$ as $n, m \to \infty$, for each *i*.

Since each X_i is complete, there is $z_i \in X_i^*$ with $|z_i|_{X_i^*} \le 1$ such that

$$|x_{n,i}-z_i|_{X_i}^*\to 0$$
 as $n\to\infty$.

Hence $z = \{z_i\} \in m_s(\{X_k^*\})$. Since coordinatewise convergence is equivalent to $\| \|_s$ convergence, we have $\|x_n - z\|_s \to 0$ as $n \to \infty$. Hence $(m_s(\{X_k^*\}), d)$ is complete.

Theorem 3. The space $l(\{X_k^{**}\})$ can be identified with a subset of $[m_s(\{X_k^{**}\})]^*$, the space of γ -linear functionals on $m_s(\{X_k^{**}\})$.

Proof. We show that if $f \in [m_s(\{X_k^*\})]^*$ then f can be uniquely associated with a sequence $\{f_i\}$, $f_i \in X_i^{**}$. If x_i represents the sequence $(0, 0, ..., x_i, 0, ...)$ and the space X_i^* is identified with the space $(0, 0, ..., X_i^*, 0, ...)$, we have

$$\lim_{n\to\infty} ||x-\sum_{i=1}^n x_i||_s = 0 \text{ for } x = \{x_i\} \in m_s(\{X_k^*\}).$$

Hence, for $f \in [m_s(X_k^*)]^*$, we have

$$f(x) = \sum_{i=1}^{\infty} f(x_i) = \sum_{i=1}^{\infty} f|_{X_i}^*(x_i) = \sum_{i=1}^{\infty} f_i(x_i),$$

where $f_i = f|_{X_i} \neq X_i \neq X_i$ and f_i represents the sequence $(0, 0, ..., f_i, 0, ...)$.

Now we show that $f \in [m_s(\{X_k^*\})]^*$ for $f = \{f_i\} \in (\{X_k^{**}\})$. Let $\{x_n = \{x_{n,k}\}\}$ be a sequence of points from $m_s(\{X_k^*\})$ and $\|x_n\|_{s\to 0}$.

Since $f \in l(\{X_k^{**}\})$, there is N_1 such that $\sum_{k=n}^{\infty} |f_k|_{X_k^{**}} < \epsilon/2$ for $n \ge N_1$,

and there is $\delta = \delta(\epsilon)$ such that for all n with $\sup_{1 \le i \le N_1} |x_{n,i}|_{X_i}^* < \delta$, we have $|\sum_{i=1}^{N_1} f_i(x_{n,i})| < \epsilon/2$.

Since $||x_n||_s \rightarrow 0$, there exists N_2 such that

$$\sup_{1\leq i\leq N_i}|x_{n,i}|_{X_i}^*<\delta \text{ for } n>N_2.$$

Hence,

$$\left|\sum_{i=1}^{N_1} f_i(x_{n,i})\right| < \varepsilon/2 \text{ for } n > N_2.$$

Thus we have, for $n > N_2$,

$$\left| f(x_n) \right| = \left| \sum_{i=1}^{\infty} f_i(x_{n,i}) \right| \le \left| \sum_{i=1}^{N_1} f_i(x_{n,i}) \right| + \left| \sum_{i=N_1+1}^{\infty} f_i(x_{n,i}) \right|$$

$$< \varepsilon/2 + \sum_{i=N_1+1}^{\infty} |f_i|_{X_i}^{**}, \quad |x_{n,i}|_{X_i}^{*}$$

$$< \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

To obtain the last inequality we have used the fact that if $x_n \in [m_s(\{X_k^*\})]^*$ then $|x_{n,i}|_{X_i^*} \le 1$ for each *i*. Thus $f \in [m_s(\{X_k^*\})]^*$.

References

- 1. S. Banach, Theorie des lineaires operations, New York (1955).
- 2. A. Alexiewicz and Z. Semandi, The two-norm spaces and their conjugate spaces, Studia Math. 18 (1959), 275-293.
- 3. A. Alexiewiczs, The two norm spaces, Studia Math. Special Volumes, 17-20 (1963).
- 4. W. Orlicz, Linear Operatios in Saks Space (2), Studia Math. 15, 1-25 (1955).
- 5. A.E. Taylor, Introduction to Functional Analysis, New York (1980).
- 6. J.E. Cooper, Saks Spaces and Application to Functional Analysis, New York (1978).